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Introduction Approaches to wireless network analysis

Analysis of Wireless Networks

Comparison of analytical approaches

very limited design

insight

stochastic geometry

analysis of random networks

scaling laws analysis of networks

with fixed geometry

concrete results but

no generality

generality by spatial averaging

and design insight
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Introduction The network geometry

The Critical Role of the Network Geometry

Wireless transmissions are separated in space, time, or frequency

A
B

C
D

space time/frequency

A

B

C

D

x

y

t,f

Separation in time and frequency not sufficient for wireless networks.
Need for spatial reuse. But separation in space is much more
challenging.
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Introduction Spatial reuse

Why is spatial reuse hard?

f
A C
B D

P

FDM

x
A CB D

P

SDM

>100dB/decade

Tx, Rx colocated

Larger P ⇒ higher R

20-40dB/decade (dist.)

Tx, Rx separated

SIR independent of P 

↓

→

↓

→

There is interference between concurrent transmissions.
Transmitter and receiver have a different picture of the situation.
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Introduction How to manage spatial reuse?

The cellular solution

Cellular system with frequency
reuse factor 1/7

A sensible solution: CSMA

A B C D
hidden node

AB C D

exposed node

The simplest solution: ALOHA
Let nodes transmit independently with probability p.

Performance analysis and protocol design
We need to analyze first the interference and the outage probabilities and
then determine optimum protocols (MAC, routing).
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Introduction Abstraction

Abstraction

(interferer)

R
T

Receiver

Transmitter

Inactive node
(potential interferer)

Active node

r0

r1

r2

r3

ri

Questions of interest
What is the interference at R? How likely is the transmission T→ R to
succeed?
How to regulate channel access and perform routing?
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Introduction Key result

Key Result
Setup

Infinitely many nodes are distributed randomly on the plane, with
density λ, and a fraction p transmits, all at power P .
Channels are Rayleigh fading.
Path loss is g(r) = r−α.
Noise power is W .
The transmission is successful if the signal-to-interference-plus-noise
ratio exceeds a threshold θ.

Result
Probability of successful transmission over distance R [BBM06]:

ps = P(SINR > θ) = exp
(
−pλθ2/αC (α)R2 − θWRα/P

)
,

where C (α) = πΓ(1− 2/α)Γ(1 + 2/α) = 2π2/(α sin(2π/α)).
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Modeling Propagation and physical layer model

Propagation and Physical Layer
Path loss and fading
If a node transmits at power P over a distance r , the received power is

S = Phg(r) ,

where:
g(r) is the large-scale (or mean) path loss law, assumed monotonically
decreasing. Typically g(r) = r−α, where α is the path loss exponent.
h is the power fading coefficient. We always have Eh = 1.
We usually assume a block fading model, where h changes from one
transmission to the next.
Often we consider Rayleigh fading, where h is exponential:

Fh(x) = 1− exp(−x) , x > 0.

The amplitude
√

h is Rayleigh distributed.
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Modeling Propagation and physical layer model

SINR
With thermal noise of variance W , the signal-to-noise ratio (SNR) is
S/W = Phg(r)/W .
The interference I is the cumulative power from all undesired transmitters.

I =
∑
i∈I

Pihig(ri ) .

This leads to the signal-to-interference-plus-noise ratio (SINR)

SINR =
Phg(r)
W + I

.

Model for transmission success

ps , P(SINR > θ) .

The (bandwidth-normalized) rate of transmission is smaller than (but close
to) log2(1 + θ) (bits/s/Hz).
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Modeling Propagation and physical layer model

Example (Rayleigh block fading with power path loss law)

With k interferers at known distances ri and path loss law r−α:

ps(r) = P(S > θ(W + I )) = exp
(
− θW

P
rα
)

︸ ︷︷ ︸
pN
s

·
k∏

i=1

1
1 + θPi

P

( r
ri

)α︸ ︷︷ ︸
pI
s

Proof

Let S = Phr−α be the received power, S̄ = Pr−α, and I =
∑k

i=1 Pihi r−α
i .

Ps = P[S > θ(W + I )] = EI

{
exp
(
−θ(I + W )

S̄

)}
= exp

(
− θW

Pr−α

)
· EI

{
exp
(
−θI

S̄

)}
These are Laplace transforms! ps = LW (θrα/P) · LI (θ/S̄).

M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 16 / 49



Modeling Propagation and physical layer model

Remarks
In a wireless network, there is a lot more uncertainty than fading: k ,
ri , perhaps Pi . There is a need to model uncertainty in the locations
of the nodes.
Let I1 denote the interference at the receiver. We have

SINR1 =
Phg(r)
W + I1

.

Now assume all nodes scale their power by a factor a. Then Ia = aI1,
and

SINRa =
aPhg(r)
W + Ia

=
Phg(r)

W /a + I1
So, increasing the power improves the SINR, since the noise power W
is reduced by a.
The noise term exp(−θWrα/P) is less interesting, so we often focus
on the SIR only.
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Modeling Uncertainty cube

The Uncertainty Cube

Three dimensions of uncertainty

channel

channel
access

Rayleigh fading
ALOHA
Poisson process

node
positions

Rayleigh
fading

ALOHA

process
Poisson

The interferer geometry
is determined by the
point process (node dis-
tribution) and the MAC
scheme.

The goal is to characterize the average network, using suitable
averaging over the uncertainty.
We will focus on some of the corner points in Lectures 1 and 2 and
talk about the interior in Lecture 6.
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Modeling Network model

Node Locations

The Poisson point process
The (homogeneous) Poisson point process (PPP) is the reference model for
the distribution of nodes in a wireless network.

Example (PPP of intensity λ)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Take a Poisson process Φ =
{x1, x2, . . .} of constant intensity
λ in a square or disk of area A.
Often, A → ∞ to avoid boundary
issues (or use toroidal boundary
conditions).
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Modeling Network model

Properties of the PPP
Let Ai ⊂ A be non-overlapping areas. Then

1

P[Φ(Ai) = n] = exp(−λ|Ai |)(λ|Ai |)n
n!

where Φ(·) is the counting measure (number of points), | · | the
Lebesque measure (area), and λ is the density of the (homogeneous)
PPP.

2 Φ(A1), Φ(A2), . . . are independent.
One of these properties is actually a consequence of the other.

Rényi (1967)
The Poisson distribution implies independence. This is not the case if
Property 1 only holds for convex Ai .
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Modeling Network model

Advantages of the PPP model
Often viewed as worst case (maximum entropy).
Analytical tractability. Due to the independence property, conditioning
on having a point somewhere does not affect the rest of the network.
As a consequence, there are many nice results (distances, interference,
outage, percolation, connectivity, coverage, ...).

Disadvantages of the PPP model
Independence property ⇐⇒ zero interaction between nodes’ positions.
This is not a good model for many networks.
Often, the set of transmitters or active nodes is to be modeled.
Except for pure ALOHA, the transmitters do not form a PPP even if
the underlying process containing all nodes is Poisson.
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Modeling Network model

Simple result for the PPP: Internode distances [Hae05]
The pdf of the distance to the n-th nearest neighbor is

pRn(r) = r2n−1(λπ)n
2

Γ(n)
exp(−λπr2) , r > 0 .

For n = 1 (nearest neighbor), this is a Rayleigh distribution. The mean
distance is 1/(2

√
λ). It does not matter whether we measure from an

arbitrary point of the plane or from a point of the process.

Proof
The probability that the n-th nearest neighbor of a point is further away
than r is the probability that there are less than n points in the area λπr2.

P[Rn > r ] = exp(−λπr2)
n−1∑
k=0

(λπr2)k

k!

This is the ccdf, so pRn(r) = −dP[Rn > r ]/dr
M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 22 / 49



Modeling Network model

Channel Access

ALOHA
In ALOHA, each node makes the decision to transmit independently and
randomly: In each time slot, each node decides to transmit with probability
p and to stay quiet (listen) with probability 1− p. This is (slotted) ALOHA.

CSMA
With carrier sensing, there is a minimum separation between concurrent
transmitters. This usually also imposes a minimum spacing between
receivers and interferers.

Deterministic scheduling
A better performance can usually be achieved if nodes’ transmissions are
scheduled deterministically. This is referred to as time division multiple
access (TDMA). But TDMA requires a centralized scheduler.
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Interference and Outage in Poisson Networks

Section Outline

1 Introduction

2 Modeling

3 Interference and Outage in Poisson Networks
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Mapping of a PPP
Mean interference
Laplace transform
Outage for Rayleigh fading
Effect of individual interferers
Effect of path loss law

4 Summary
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Interference and Outage in Poisson Networks Setup

Setup

PPP plus a desired transmitter

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

R

PPP {x,x} of intensity λ.
ALOHA with probability p.
Active nodes (interferers) x
form a PPP of intensity λp.
o: Receiver under
consideration, assumed at
origin.
x: Desired transmitter (not
part of the point process),
at distance R .

Questions: interference at o?
Success prob. P(SINR > θ)?
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Interference and Outage in Poisson Networks Mapping of a PPP

Intensity measure
For a point process Φ = {x1, x2, . . .}, the number of nodes in a subset
A ⊂ R2 is

Φ(A) , |Φ ∩ A| =
∑
x∈Φ

1(x ∈ A) .

Φ(A) : R2 → N0 is a counting measure for the number of points in A.
The intensity or mean measure is the expected number of nodes EΦ(A):

Λ(A) , EΦ(A) .

For a stationary PPP of intensity λ : Λ(A) = λ|A|.
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Interference and Outage in Poisson Networks Mapping of a PPP

Non-homogeneous PPP
A PPP whose intensity depends on the location is a non-homogeneous or
non-stationary PPP. In this case,

Λ(A) =

∫
A

λ(x)dx .

The number of points in A is Poisson with mean Λ(A).

Mapping
Let f : R2 → R be a mapping function. Then Φ∗ = {f (x1), f (x2), . . .} is a
one-dimensional point process. By the mapping theorem [Kin93], Φ∗ is a
Poisson process with Λ∗(B) = Λ(f −1(B)).

M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 27 / 49



Interference and Outage in Poisson Networks Mapping of a PPP

The one-dimensional PPP of distances
Let Φ be stationary with intensity λ and f (x) = ‖x‖. For B = [0, r ],
f −1(B) = b(o, r), the ball of radius r at the origin. We obtain

Λ∗(B) = Λ(b(o, r)) = λπr2

and
λ∗(r) = 2λπr , r ≥ 0 .

So the distances of the points of a PPP that is homogeneous on the plane
form a non-homogenous PPP on R+ with linearly increasing density.
The squared distances {‖x1‖2, ‖x2‖2, . . .} form again a homogeneous PPP,
with intensity λ∗ = λπ.

Analogous: If x is uniformly randomly distributed on the disk b(o,R), the
radius ‖x‖ has probability density f‖x‖(r) = 2r/R2, 0 ≤ r ≤ R .
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Interference and Outage in Poisson Networks Mapping of a PPP

Example (Mapping from x ∈ R2 to ‖x‖ ∈ R)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

PPP on b(o, 3) with λ = 1. Λ(b(o, 3)) = π32 ≈ 28.2.

0 0.5 1 1.5 2 2.5 3
−1

0

1

PPP on [0, 3] with λ∗(r) = 2πr . Λ∗([0, 3]) = Λ(b(o, r)).
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Interference and Outage in Poisson Networks Mapping of a PPP

Interference
Assume the transmitting nodes form a stationary PPP Φ of intensity λ in
R2. All nodes transmit at unit power, and the path loss g(r) = r−α.
Interference at origin:

I ,
∑
x∈Φ

hx‖x‖−α .

Due to the stationarity of the PPP, the distribution of I is the same
everywhere.
Equivalently,

I =
∑
r∈Φ∗

hr r−α ,

where Φ∗ = {‖x1‖, ‖x2‖, . . .} is the PPP of the distances.
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Interference and Outage in Poisson Networks Mean interference

Mean interference
Since Eh = 1,

E(I ) = E
∑
r∈Φ∗

hr r−α = E
∑
r∈Φ∗

r−α .

Campbell’s theorem
Let f be non-negative function. Then

E
∑
x∈Φ

f (x) =

∫
Rd

f (x)Λ(dx) .

In our case,

E
∑
r∈Φ∗

r−α =

∫
R+

r−α2πλrdr =
2πλ

2− α
r2−α

∣∣∣∞
0

, α 6= 2 .

This diverges for all α! So E(I ) =∞.
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Interference and Outage in Poisson Networks Mean interference

Mean interference

From previous slide: E(I ) =
2πλ

2− α
r2−α

∣∣∣∞
0

.

If α < 2, the upper integration bound is the culprit. There is too much
interference from all the far nodes.
If α > 2, the lower integration bound is the culprit. The nodes near the
origin make E(I ) diverge, since r−α grows too quickly as r ↓ 0 if α > 2.

A bounded path loss model would solve the problem for α > 2. More on
that later.
Similarly, if it can be ensured that no node is close to the origin, E(I )
remains finite for α > 2. Replace the lower integration bound by ρ > 0 to
obtain

E(I ) =
2πλ

α− 2
ρ2−α .

This can be used to model CSMA.
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Interference and Outage in Poisson Networks Laplace transform

Laplace transform
We would like to find the Laplace transform of I to learn more about the
interference.

LI (s) = E(e−sI ) = EΦ∗,h

(
e−s

P
r∈Φ∗ hr r−α

)
= EΦ∗

( ∏
r∈Φ∗

Eh(e−shr r−α
)︸ ︷︷ ︸

v(r)

)
.

We need to calculate the expectation of a product over the point process.
In the Poisson case, this is easy, thanks to the probability generating
functional: For functions v : Rd 7→ [0, 1],

E
∏

x∈Φ∗
v(x) = G [v ] .

M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 33 / 49



Interference and Outage in Poisson Networks Laplace transform

Probability generating functional (pgfl)
The pgfl of a PPP Φ with intensity measure Λ is

G [v ] = E
∏
x∈Φ

v(x) = exp
(
−
∫

R2
[1− v(x)]Λ(dx)

)
.

Laplace transform
Applied to the interference:

LI (s) = G [v ] = exp
(
−
∫

R+

[1− Eh(e−shr r−α
)]Λ∗(dr)

)
,

where
Λ∗(dr) = λ∗(r)dr = 2πλrdr .
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Interference and Outage in Poisson Networks Laplace transform

Laplace transform

From previous slide: LI (s) = exp
(
−πλ

∫
R+

2[1− Eh(e−shr r−α
)]rdr)

)
Swapping expectation and integral and conditioning on h, the integral is:

2
∫ ∞

0

[
1− exp(−shr−α)

]
rdr

(a)
=

∫ ∞

0

[
1− exp(−sh/y)

]
δy δ−1dy

(b)
=

∫ ∞

0

[
1− exp(−shx)

]
δx−δ−1dx

(c)
=

∫ ∞

0
x−δsh exp(−shx)dx

= (sh)δΓ(1− δ) , 0 < δ < 1.

(a): y ← r1/α, δ = 2/α. (b): x ← y−1. (c): Integration by parts.
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Interference and Outage in Poisson Networks Laplace transform

Laplace transform
Taking the expectation over h, we have

LI (s) = exp
(
− λπE(hδ)Γ(1− δ)sδ

)
, 0 < δ < 1 .

The interference has a stable distribution with characteristic exponent
δ and dispersion λπE(hδ)Γ(1 − δ).
If δ ↑ 1 (or α ↓ 2), we have LI (s) ↓ 0, for all s > 0, so I ↑ ∞ almost
surely (a.s.). So we need α > 2 for finite interference.
I does not have any finite moments.
The interference (power) is very far from Gaussian. The amplitude
may be, though.
For ALOHA with probability p, replace λ by λp.
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Interference and Outage in Poisson Networks Laplace transform

Interference distribution
Closed-form expressions for the distri-
bution only exist for α = 4. In this
case, without fading,

LI (s) = exp
(
− λ
√

s
π2

2

)
.

The corresponding distribution is the
Lévy distribution 0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03
Levy distribution

fI (y) =
π

2
λy−3/2e−π3λ2/4y , FI (y) = 1− erf

(
π3/2λ

2
√

y

)
for y > 0.
It has a heavy tail, as expected from the fact that it does not have a mean.
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Interference and Outage in Poisson Networks Laplace transform

Remarks on interference distribution
This interference is not Gaussian, even for λ→∞.
The tail of a Lévy-stable density with δ < 2 decays like a power
function.

fI (y) ∼ λπδ E(hδ)y−(1+δ) , y →∞
The long tail is due to the singularity of the path loss law.
Equivalently, P[I > x] = Θ(x−δ) as x →∞.
Let Ĩ denote the interference without the closest interferer. The
distribution of Ĩ has a different tail of smaller order:

P[̃I > x] = o(x−δ) as x →∞ .

The type of fading is irrelevant, only E(hδ) matters.
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Interference and Outage in Poisson Networks Outage for Rayleigh fading

Laplace transform for Rayleigh fading

Since E(hδ) = Γ(1 + δ):

Li(s) = exp
(
−λπΓ(1 + δ)Γ(1 − δ)sδ

)
= exp

(
−λπsδ πδ

sin(πδ)

)
.

Outage for Rayleigh fading and ALOHA
For a transmission over distance R , the received signal power is S = hR−α.
The success probability is

ps = P(hR−α > Iθ) = E(e−θRαI ) = exp
(
−λπΓ(1 + δ)Γ(1 − δ)θδR2

)
with δ = 2/α. The Laplace transform gives us the success probability in
Rayleigh fading! This is our key result!
So while we do not have a distribution of I in general, we have a
distribution of the SIR: ps = P(SIR > θ) is its ccdf.
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Interference and Outage in Poisson Networks Effect of individual interferers

Interference from the nearest node

P(I1 6 x) = P(R−α 6 x) = P(R > x−1/α) = exp(−λπx−δ) ,

where δ = 2/α. We get
EI1 = π1/δΓ(1− 1/δ) , δ > 1 .

If δ < 1 then E(I1) does not exist. Generally, E(I p
1 ) exists for p < δ since

P(I1 > x) ∼ λπx−δ x →∞ .

M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 40 / 49



Interference and Outage in Poisson Networks Effect of individual interferers

Interference from n-nearest node
The ccdf of the distance to the n-th nearest neighbor Rn is

P(Rn > r) =
Γic(n, λπrd )

Γ(n)
.

So for n = 2,
P(I2 < x) = exp(−λπx−δ)(1 + λπx−δ)

and
P(I2 > x) ∼ 1

2
(λπ)2x−2δ .

So we need 2δ > 1 for EI2 to exist.
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Interference and Outage in Poisson Networks Effect of individual interferers

Interference from n-nearest node (cont.)
For general n:

P(In < x) = exp(−λπx−δ)
n−1∑
i=0

(
λπx−δ

)i
i!

For the tail probability we need to sum from n to ∞, so the dominant term
will be the one for i = n as x →∞. Therefore

P(In > x) ∼ 1
n!

(λπ)nx−nδ .

This means that E(I p
n ) exists for p < nδ. For example, we would need to

cancel k > α interferers to have a finite second moment.
On the other hand, canceling all nodes within distance ǫ > 0 or using a
bounded path loss law would ensure finite moments.

M. Haenggi (Wireless Institute, ND) Lecture 1 Sep. 2010 42 / 49



Interference and Outage in Poisson Networks Effect of path loss law

Effect of Path Loss Law

Interference with bounded path loss
Consider a path loss law g(r) = min{1, r−α}, and let the diameter of the
network be D > 1. So we consider a PPP of intensity λ on b(o,D).
In this case, from Campbell’s theorem,

E(ID) =

∫
R+

g(r)2λπrdr =

∫ 1

0
2λπrdr +

∫ D

1
r−α2λπrdr

= λ

(
π +

2π
α− 2

(1− D2−α)

)
.

The Laplace transform can also be calculated; it involves incomplete
gamma functions. Moments can be obtained by

E(Im) = (−1)m
dm

dsm log(LI (s))
∣∣∣
s=0

.
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Summary

Section Outline
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2 Modeling

3 Interference and Outage in Poisson Networks
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Interference and outage
Campbell’s theorem and the pgfl
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Summary Interference and outage

Lecture 1 Summary

Interference and outage
The boundedness of the path loss model has a drastic impact on the
distribution of the interference.
On the other hand, the success probability is not affected significantly
by the path loss model. Since for large interference, there is an outage
anyway, the heavy tail does not matter much.
In fact, the SIR has a very benign distribution. For Rayleigh fading, it
is just a Weibull distribution:

P(SIR 6 x) = 1− exp(−cxδ) .

The mean is

E(SIR) =
1

Rα

Γ(1 + 1/δ)
(λpC (α))1/δ

, C (α) = πΓ(1 + δ)Γ(1 − δ) .
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Summary Interference and outage

Outage
Since

ps = exp(−λπR2θδC (α)) ,

the success probability equals the void probability that there is no node in
b(o,R ′) with

R ′ = Rθδ/2
√

C (α) .

Generalization to d dimensions
Most results generalize to d dimensions in a very straightforward manner.
There are only two changes needed in all results:

Replace πλ by cdλ, where cd is the volume of the d -dimensional unit
ball: cd = |b(o, 1)| = πd/2/Γ(1 + d/2).
Replace δ = 2/α by δ = d/α.
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Summary Campbell’s theorem and the pgfl

Campbell’s theorem
Let f be non-negative function. Then

E
∑
x∈Φ

f (x) =

∫
Rd

f (x)Λ(dx) .

Example (Number of points in A)
Take a stationary PPP and let f (x) = 1(x ∈ A). Then we know that

E
∑
x∈Φ

f (x) = EΦ(A) .

Campbell’s theorem gives

E
∑
x∈Φ

f (x) = λ

∫
A

dx = λ|A| ,

as expected.
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Summary Campbell’s theorem and the pgfl

Probability generating functional (pgfl)
The pgfl of a PPP Φ with intensity measure Λ is

G [v ] = E
∏
x∈Φ

v(x) = exp
(
−
∫

R2
[1− v(x)]Λ(dx)

)
.

Example (Void probability of A)
Let v(x) = 1− 1(x ∈ A). Then G [v ] = 1 only if all points in Φ are outside
of A, i.e., G [v ] is the void probability. We have

P(A empty) = E
∏
x∈Φ

v(x) = G [v ] = exp(−λ

∫
A

dx) = exp(−λ|A|) ,

as expected from the void probability in the Poisson process.
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Throughput Probabilistic throughput

Throughput
Unconditional success probability
Previously we assumed that the desired transmitter transmits and the
receiver listens. The unconditioned success probability is

ALOHA: pT , p(1− p) ps (p) .

Optimum ALOHA transmit probability
Let ps(p) = e−pγ , where γ is the spatial contention [Hae09]. For the PPP
with Rayleigh fading, e.g.,

γ = λπR2θδ πδ

sin(πδ)
, δ = 2/α.

We find popt(γ) =
1
γ
− 1

2

(√
1 +

4
γ2 − 1

)
︸ ︷︷ ︸

half-duplex penalty

.
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Throughput Probabilistic throughput

Remark on optimum transmit probability p
Consider the success probability as a function of γ with the optimum
transmit probability:

popt
s (γ) , ps(popt(γ))

The resulting popt
s (γ) decays quickly with γ. For example, popt

s (γ) < 1/2
for

γ >
log 2(2− log 2)

1− log 2
≈ 2.9 .

Although throughput-optimum, such low success probabilities are not
acceptable for many applications, and they waste energy. We will get back
to this later.
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Throughput Probabilistic throughput

Definition (Probabilistic throughput)
If the transmission rate is log(1 + θ) (nats/s/Hz), there is an outage if
SIR < θ. So for fixed-rate transmission, it is natural to set the rate to
log(1 + θ). The probabilistic throughput is

T (θ) , pT (θ) log(1 + θ)

Optimum SIR threshold for full-duplex operation [Hae09]

The probabilistic throughput T f = p exp(−pγ) log(1 + θ) is maximized at
the rate (spectral efficiency)

Ropt
T = log(1 + θopt) = W

(
−1

δ
e−1/δ

)
+

1
δ

(nats/s/Hz) ,

where W is the principal branch of the Lambert W function, i.e.,
W(x)eW(x) = x with W(x) ≥ −1.
Tight bound: Ropt

T (α) / α− 2.
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Throughput Probabilistic throughput

Optimum threshold and throughput for PPP ALOHA network with
Rayleigh fading
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Half−duplex
Full−duplex

Transmissions at relatively low rate are optimum.
The throughput increases linearly with α.
There is a fixed small penalty factor for half-duplex operation.
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Throughput Shannon throughput

Shannon Throughput

Shannon throughput
If the transmitter has full knowledge of S and I , it can adjust its rate of
transmission accordingly.
Alternatively, if there is enough time diversity in S and I , e.g., through fast
FH, the transmitter can signal at E log(1 + SIR).
Either way, the resulting throughput is the Shannon throughput
E log(1 + SIR).

Definition (Shannon throughput C )

C , E log(1 + SIR) =

∫ ∞
0

− log(1 + θ)dps(θ) ,

where ps(θ) is the ccdf of the SIR.
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Throughput Shannon throughput

Alternate expression for Shannon throughput
Let ps(θ) be the success probability as a function of the SINR threshold.
The Shannon throughput can also be calculated as follows:

E log(1 + SIR) =

∫ ∞
0

P(log(1 + SIR) > θ)dθ

=

∫ ∞
0

P(SIR > eθ − 1)dθ

=

∫ ∞
0

ps(eθ − 1)dθ .

This is sometimes easier to evaluate or bound.
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Throughput Shannon throughput

Example (PPP ALOHA network with Rayleigh fading)
For α = 4 and R = 1:

C = 2ℜ{q} cos(pλπ2/2)− 2ℑ{q} sin(pλπ2/2) , q , Ei(1, jpλπ2/2) ,

where Ei(1, z) =
∫∞
1 exp(−xz)x−1dx is the exponential integral.

For general α:

C >

∫ ∞
1

− log(θ)dps(θ) =
α

2
Ei(1, pλC (α)) .

Spatial Shannon throughput
Since C (p) →∞ as p → 0, the Shannon throughput itself does not give
insight on how to choose p.
Instead, as before, use the spatial Shannon throughput or throughput
density:

p(1− p)C (p)
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Throughput Spatial Shannon throughput

Spatial Shannon throughput for PPP ALOHA network
The SIR-based capacity diverges as p → 0, so a better metric is the spatial
capacity p(1− p)C (half-duplex) and pC (full-duplex).

0 0.2 0.4 0.6 0.8 1
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The optimum p is independent of α. For half-duplex operation,
popt ≈ 1/9.
The maxima are about 2.5 times higher than for the probabilistic
throughput. So rate adaptation can result in a significant gain.
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Throughput Transmission capacity

Transmission Capacity
Definition (Transmission capacity)
The maximum density of successful transmissions subject to an outage
constraint ǫ, multiplied by 1− ǫ [WYAdV05]:

TC(ǫ) = (1− ǫ) sup{λ : ps(λ) > 1− ǫ} .

Or, if ps is viewed as just a function of λ and the inverse is p−1
s ,

TC(ǫ) = (1− ǫ)p−1
s (1− ǫ) .

It is available in closed-form whenever ps is known and invertible.

Advantage over throughput as a metric
The transmission capacity metric imposes a maximum outage probability
and is thus very useful in applications that cannot tolerate high packet loss
rates.
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Throughput Transmission capacity

Example (Transmission capacity for PPP with Rayleigh fading)
In this case, the success probability is invertible, and we have

TC(ǫ) = (1− ǫ)
− log(1− ǫ)

R2θ2/αC (α)
=

ǫ

R2θ2/αC (α)
+ Θ(ǫ2) , ǫ → 0 .

This is linear in ǫ and inversely proportional to the area of the disk b(o,R).
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Throughput Transmission capacity

Transmission capacity in more general settings [WAJ10]
Approximations for general fading are possible.
If there is no fading and α = 4, the TC follows from the Lévy
distribution.
Considering only the nearest interferer yields an upper bound on the
TC. The bound is tight when α is not too close to 2.
MIMO: With Nt transmit and Nr receive antennas used for diversity,

Ω(max{Nt ,Nr}δ) = TC(ǫ) = O((NtNr )
δ) , Nt ,Nr →∞ .

SIC with Nt = 1 and Nr > 1: Canceling the strongest Nr − 1
interferers yields TC(ǫ) = Θ(N1−δ

r ). This is much better for larger α
— but requires knowledge of the interferers’ channels.
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Throughput Comparison with regular networks

Line Networks with TDMA

Line network with spatial reuse parameter m
Take a regular line network with {ri} = |Z| and have every m-th node
transmit concurrently.

...
−4 −3 −2 −1 1 2 3 4

...

T

R

TDMA line network with m = 2.

Success probability with Rayleigh fading

α = 2 : ps =

(
y

sinh y

)2

, where y , π
√

θ

m
[MM95]

α = 4 : ps =

(
2y2

cosh2 y − cos2 y

)2

, where y , πθ1/4
√

2m
.
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Throughput Comparison with regular networks

Probabilistic throughput
The probabilistic throughput is the unconditioned success probability.
ALOHA:

full-duplex: pf
T , p ps(p) ; half-duplex: ph

T , p(1− p) ps (p) .

TDMA:
pT , ps(m)/m

Result for TDMA
From bounds on ps(m) we can obtain a very good estimate on the
optimum m:

m̂opt = ⌈(ζ(α)θ(2α− 1/2)
)1/α⌋
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Throughput Comparison with regular networks

Theorem (Capacity of TDMA line networks [Hae09])
For α = 2,

2 log
(

2m
π

)
< C < log

(
1 +

7ζ(3)
π2 m2

)
and

E
√

SIR =
π

4
m ; ESIR =

7ζ(3)
π2 m2 .

For general α > 1,

C > eζ(α)/mα
Ei(1, ζ(α)/mα) ; ESIR >

mα

ζ(α)
.

Comparison with 1-dim. PPP ALOHA network

ESIRALOHA =
Γ(1 + α)

(C1(α)p)α
; α = 2 :

ESIRTDMA

ESIRALOHA
≈ 4.2
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Throughput Comparison with regular networks

TDMA line network capacity
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Capacity
Lower bound 1
Lower bound 2
Upper bound

Link capacity of TDMA line network for α = 2.

The maximum spatial capacity C/m ≈ 0.6 is achieved at m = 2. This is
about 75% higher than the (optimized) PPP line network with ALOHA.
For α = 4, m = 3 achieves a slightly higher capacity.
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Other Applications
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Other Applications CSMA

Other Applications

CSMA emulation using guard zone
With a path loss law g(r) = r−α1(r > ρ), the success probability with
CSMA can be calculated as a function of the guard zone radius ρ.
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ALOHA
CSMA with λ π rho2=[1, 2, 3]

PPP with λ = 1/10 and
α = 4.

The exclusion radii are
chosen such that 1, 2, and
3 interferers are muted on
average.
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Other Applications Spread-spectrum techniques

Direct-sequence vs. frequency hopping spread spectrum [AWH07]
Consider spreading signals by a factor M, either using DS-SS or FH-SS.
With DS-SS, the density of interferers stays the same, but the interference
is reduced by a factor M.

pDS
s (θ,M) = E(e−θI/M) = ps(θ/M) .

DH-SS: log ps(θ) ∝ θδ =⇒ log ps(θ/M)

log ps(θ)
= M−δ .

With FH-SS, the density of interferers is reduced by a factor M:

FH-SS: log ps(θ) ∝ λ =⇒ log pFH
s (θ)

log ps(θ)
= M−1 .

Since δ < 1, the benefit of FH-SS is larger; the difference is more drastic
for small δ, i.e., for large α.
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Other Applications Opportunistic ALOHA

Opportunistic ALOHA
Exploiting CSI
If the transmitter knows the channel, it can transmit whenever the channel
state is good instead of transmitting “blindly" with probability p as in
regular ALOHA.
For a threshold ν, let each node x transmit when hx > ν. For all other
nodes, this is the same as ALOHA with p = P(h > ν). We have

ps(ν) = P(S > Iθ | h > ν) .

For Rayleigh fading, we needed E(h−δ) = Γ(1− δ). With conditioning,

E(h−δ | h > ν) = Γ(1− δ, ν) ,

where Γ(·, ·) is the upper incomplete gamma function

Γ(a, z) =

∫ ∞
z

ta−1 exp(−t)dt .
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Other Applications Opportunistic ALOHA

Opportunistic ALOHA in Rayleigh fading

Upper bound [WAJ06]: ps < exp
(
−pλπΓ(1 + δ)Γ(1 − δ, ν)θδR2

)
,

where p = P(h > ν) = exp(−ν).
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standard ALOHA
bound for opp. ALOHA

Comparison of ps(θ) for λ = 1/2, R = 1, θ = 5, and α = 4 (δ = 1/2).
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Other Applications Power control

Power Control

Channel inversion without fading
Assume each transmitter talks to its nearest neighbor at distance R . Since
R is Rayleigh with mean 1/(2

√
λ), the transmitter power is Weibull

distributed:
P(P ≤ x) = 1− exp(−λπxδ)

Power control at the transmitters acts like fading. Since E(Pδ) = 1/(πλ),

LI (s) = exp(−pΓ(1− δ)sδ) .

This does not depend on the density of the network.
Since the "fading" is not Rayleigh, the success probability cannot be
derived from the Laplace transform.
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Other Applications Power control

Channel inversion with fading
Let each node have its destination at distance 1. If the fading is fully
compensated, the received signal power S ≡ 1. The interference is

I =
∑
x∈Φ

hxo

hxz
‖x‖−α ,

where hxo is the fading from node x to the receiver at the origin, and hxz is
the fading from node x to its own receiver. The success probability

ps = P(S > Iθ) = P(I < θ−1) cannot be calculated in closed-form.

If all fading is Rayleigh, an immediate problem is that E(h−1) = ∞, i.e.,
finite power is not sufficient for full channel inversion.
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Other Applications Power control

Channel inversion with fading
For Rayleigh fading, H = hxo/hxz is distributed as

FH(x) = P(H ≤ x) =
x

x + 1
.

The relevant metric for the success probability is the δ-th moment Hδ . It
turns out that full channel inversion decreases the success probability.

However, fractional channel inversion helps. Let the transmit power at each
transmitter be Px = h−s

x for 0 ≤ s ≤ 1. s = 0 means no power control,
while s = 1 means full channel inversion.
It is shown in [JWA08b] that s = 1/2 is optimal. This also solves the
problem of infinite mean transmit power, since in this case E(P) =

√
π.

This value of s minimizes E(X−s)E(X s−1) for all non-negative RVs.
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Other Applications Bandwidth partitioning

Bandwidth Partitioning
Optimum number of subbands [JWA08a]
Given a total bandwidth B , what number of subbands N should be chosen
to maximize the number of concurrent links in the network?
Given a rate of transmission RT , the corresponding SIR threshold is:

RT =
B
N

log(1 + θ(N)) =⇒ θ(N) = exp(NRT /B)− 1 .

Let b = NRT /B be the spectral efficiency. Using the transmission capacity
framework, we can find the bopt that maximizes the total density of
concurrent transmissions given an outage constraint:

λ(b, ǫ) ∝ b
(eb − 1)δ

=⇒ bopt = W
(
−1

δ
e−1/δ

)
+

1
δ

(nats/s/Hz) ,

which is exactly the spectral efficiency that maximized the probabilistic
throughput on slide 7! Hence Nopt ≈ (α− 2)B/RT .
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A Geometric Interpretation of Fading
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A Geometric Interpretation of Fading Introduction

Path Loss Processes with Fading [Hae08]
Basic idea
Have “distances” indicate path loss (with fading).

Definition (Path loss process with fading (PLPF))

{yi}: PPP of intensity 1 in Rd , ordered according to ‖yi − o‖.
Define a one-dimensional PPP {ri , ‖yi − o‖} on R+.
Let α be the path loss exponent of the network and let

Φ = {xi , rα
i }

be the path loss process (before fading) (PLP).
Let {f , f1, f2, . . .} be iid with distribution F and Ef = 1, and let

Ξ = {ξi , xi/fi}
be the path loss process with fading (PLPF).
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A Geometric Interpretation of Fading Introduction

Path Loss Process with Fading

Illustration: From PPP to PLPF
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1 2 3 4 5

1 2 3 4 5
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R2y

r

x

ξ

PLP
Φ

PLPF
Ξ 1/s

Notation
{yi}: PPP with intensity 1
{ri , ‖yi − o‖}
Φ = {xi , rα

i }
Ξ = {ξi , xi/fi}

Connected nodes
Node i is connected (to o) if ξi < 1/s.
Processes of connected nodes are Φ̂ = {xi : ξi < 1/s} and
Ξ̂ = Ξ ∩ [0, 1/s).
In the example PLPF, Node 4 is disconnected.
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A Geometric Interpretation of Fading Introduction

Basic Properties of the PLP, PLPF

Φ, Ξ, and Ξ̂ are Poisson (generally inhomogeneous).
EΦ([0, x)) = cdxδ , λ(x) = cdδxδ−1, where δ = d/α.
For δ = 1, Φ is uniform (on R+). Density increasing with x if d > α.
For δ = 1 and Rayleigh fading,

Fξi (x) =
(cdx)i

(cdx + 1)i
.

Note that Eξi does not exist.
For δ = 1 and arbitrary fading (with unit mean),

Ξ(B)
d
= Φ(B) ∀ B ⊂ R ,

i.e., fading is distribution-preserving.

Note that ξi are neither ordered nor independent.
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A Geometric Interpretation of Fading Local Connectivity

Local Connectivity

Impact of fading

The process of connected nodes is

Ξ̂ = {ξi : ξi < 1/s} = Ξ ∩ [0, 1/s).

The effect of fading is location-dependent
(but node-independent) thinning:

λ̂(x) = λ(x)(1 − F (sx))

since
P[x/f < 1/s] = P[f > sx] = 1− F (sx).

Without fading, F (x) = u(x−1), and we
obtain the “disk model”.
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s = 0.1. The disk has radius
1/
√

s.
Red nodes are connected
under Rayleigh fading.
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A Geometric Interpretation of Fading Local Connectivity

Fading as a stochastic mapping
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Connectivity for s = 1.
Red nodes benefit from fading, purple ones suffer from it.
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A Geometric Interpretation of Fading Local Connectivity

A More General Fading Model

Definition (Nakagami-m fading)

pf (x) =
mm

Γ(m)
xm−1 exp(−mx), m > 0

Remarks
Ef = 1, and var f = 1/m. P[f < x] = 1− Γ(m,mx)/Γ(m).
For m = 1, this is exponential (or Rayleigh in the amplitude). The
sum of m iid Rayleigh-fading signals is a Nakagami distributed signal.
Describes the amplitude of received signal after m-branch maximum
ratio diversity combining (MIMO).
For m →∞, pf (x) → δ(x − 1) and thus f = 1 (no fading), so a
non-negligible LOS component in the received signal can be modeled,
and the case of no fading is a special case.
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A Geometric Interpretation of Fading Local Connectivity

Connectivity under Nakagami fading

The number N̂ = Φ̂(R+) of
connected nodes is Poisson with
mean

EN̂m =
cd

(ms)δ
Γ(δ + m)

Γ(m)

The connectivity fading gain is

EN̂m

EN̂∞
=

1
mδ

Γ(δ + m)

Γ(m)
= E(f δ) .

The connectivity fading gain
equals the δ-th moment of the
fading distribution.

Proof: Calculate
∫∞
0 λ̂(x)dx .
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δ = d/α.
So only if d > α, fading helps.

This is not common.
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A Geometric Interpretation of Fading Broadcast Transport Capacity

Broadcast Transport Capacity

Definition (Broadcast transport sum-distance)
This is the sum of the (geographical) distances to all the connected nodes:

D , E
(∑

x∈Φ̂

x1/α
)

For Nakagami-m fading:

Dm = cd
δ

∆

1
(ms)∆

Γ(m + ∆)

Γ(m)
,

where δ , d/α, ∆ , (d + 1)/α.
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A Geometric Interpretation of Fading Broadcast Transport Capacity

Proof.
Using Campbell’s theorem:

Dm =

∫ ∞
0

x1/αλ̂m(x)dx

Broadcast fading gain
The (broadcast) fading gain Dm/D∞ is

Dm

D∞
=

1
m∆

Γ(m + ∆)

Γ(m)
= E(f ∆) .

δ , d/α, ∆ , (d + 1)/α. The gain is the ∆-th moment of f .
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A Geometric Interpretation of Fading Broadcast Transport Capacity

Definition (Broadcast transport capacity)
Include the (maximum) rate of transmission R = log2(1 + s) and define

C , max
R>0

{R · D(R)} = max
s>0

{log2(1 + s)D(s)}.

as the broadcast transport capacity.

For Nakagami-m fading:
For ∆ ∈ (0, 1], the broadcast transport capacity is achieved for

Ropt =
W
(
− e−1/∆

∆

)
+ ∆−1

log 2
, ∆ ∈ (0, 1] ,

where W is the (principal branch) of the Lambert W function.
The corresponding Cm is smallest for ∆ = 1/(2 log 2) ≈ 0.72.
For d = 2, this means αmin = 4.16.
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A Geometric Interpretation of Fading Broadcast Transport Capacity

Broadcast transport capacity for Nakagami-m fading, cont.
For ∆ > 1 (α < 3 for d = 2), the broadcast transport capacity
increases without bounds as R → 0 (or s → 0), independent of the
transmit power.

Intuition
D(s) ∝ s−∆, and for small s, R ≈ s. So Cm ≈ s1−∆. Reaching more
nodes more than offsets the reduced rate.
Impact on broadcast protocols? Is this the right metric?

With (fancy) superposition coding:
If all nodes could decode at their SNR, we would have (without fading)

C̃ = E

[∑
x∈Φ

x1/α log2(1 + x−1)

]
.

In this case, the singularity of the path loss model would become significant.

M. Haenggi (Wireless Institute, ND) Lecture 2 Sep. 2010 40 / 44



Summary
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Summary

Lecture 2 Summary

Throughput analysis and design of Poisson networks
In Lecture 1, we have derived a success probability result. For MAC
design, a form of throughput is needed.
Regular networks provide a larger throughput. This regularity gain is
partially achieved by CSMA.
The effects of power control and spread-spectrum can be analyzed.
With power control, care is needed since the effect of all other
receivers needs to be factored in. Opportunistic schemes are great—if
CSI is available.
Fading can be interpreted in a geometric fashion. The resulting point
process represents path loss including fading. The Poisson property is
preserved by this mapping.
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Introduction Motivation

Introduction

Random graphs and geometric graphs
Graph models have a long tradition in networking. In wired networks,
there is a direct mapping from wires between nodes to edges in a
graph.
In mathematics, random graphs, where the existence of edges is
subject to randomness, are well-studied objects [Bol01]. The basic
model is: G = (V ,E ) where V = [n] = {1, . . . , n} and E ⊂ [n]2 with
M = |E | edges. If N =

(n
2

)
, then there are

(N
M

)
such graphs, and each

one occurs with probability
(N
M

)−1
.

In sociology, such models are useful when interactions are possible
between all individuals.
If there is a notion of distance between vertices (points, nodes) and
vertices that are further away are less likely to interact, the graph
turns into a random geometric graph.
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Introduction Motivation

Random graphs and geometric graphs
Although there are similarities between abstract random graphs and
geometric random graphs, the latter are more challenging in many
cases since there is a triangular relationship: If x is connected to y ,
and y to z , then it is quite likely that z is also connected to x .
In the wireless setting, random geometric graphs are often good
models, since distances are critical and edges may be subject to
uncertainty.
In a random geometric graph, each node has a location, usually in Rd ,
and the probability of an edge x → y depends on ‖x − y‖.
The most basic model is Gilbert’s disk graph.
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Introduction Gilbert’s disk graph

Gilbert’s Disk Graph [Gil61]
Definition (Gilbert’s disk graph)

Take a stationary PPP of intensity λ
as the vertices of a random geometric
graph and connect two vertices by an
edge if they are within distance r of
each other. The resulting graph Gλ,r is
called a disk graph.

Example: λ = 1, r = 1
−5 0 5
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−4
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−2

−1

0

1

2

3

4

5

Interpretation
In the absence of interference, the condition SNR > θ defines a maximum
communication radius r

r =

(
P
θW

)1/α

.
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Introduction Gilbert’s disk graph

Connectivity
Let Φ be a PPP of intensity 1 on
[0,
√

n]2 so that EN = n.

What communication radius rc
guarantees that Gr (n) is connected whp
as n →∞?
Formally, we want

lim
n→∞P[Grc (n) connected] = 1 .

Examples: n = 100
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r = 3/2
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Introduction Gilbert’s disk graph

Minimum transmission radius for connectivity
A necessary condition for connectivity is that no node is isolated.
The expected number of isolated nodes

ENisol = n P(typical node is isolated) = n exp(−πr2)

needs to go to 0 as n grows. So we need πr2 ' log n for connectivity.

[Pen97] showed that indeed the isolated nodes determine the connectivity
such that

πr2 = log n + ω(1) ,

where ω(1) is any function f for which f (n) →∞ (arbitrarily slowly) as
n →∞.

Setting πr2 = log n + c would result in a Nisol ∼Po(exp(−c)).

So r needs to grow with
√

log n to keep the network connected!

But a constant power is enough to keep an infinite number of nodes
connected. Percolation theory gives bounds on this critical threshold.
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Bond Percolation on Lattice Model

Bond Percolation on Lattice

Lattice with open and closed bonds
Take the set of vertices to be the points in Z2, and put edges among all
nearest neighbors. Make edges open (passable) with probability p or closed
(blocked) with probability 1− p.

Example (Bond percolation)
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p = 0.3
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p = 0.6
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Bond Percolation on Lattice Critical probability

Critical probability
Let u ↔ v stand for the existence of an (open) path between u, v ∈ Z2.
The open cluster C (v) is the set of all vertices that are connected to v by
an open path:

C (v) = {u ∈ Z2 : u ↔ v}
The central quantity is the percolation probability

ψ(p) = P(o ↔∞) = P(|C (o)| = ∞) .

The lattice model exhibits a phase transition, i.e., there exists a critical
value pc such that ψ = 0 for p < pc and ψ > 0 for p > pc .

The critical probability is defined as

pc , sup{p : ψ(p) = 0} .

By Kolmogorov’s 0-1 law, there exists an in-
finite component w.p. 1 as soon as p > pc .

ψ(p)

1p
c

1

p
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Bond Percolation on Lattice Critical probability

Two larger examples

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

p = 0.45
−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

p = 0.55

This indicates that the critical probability is near 1/2.
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Bond Percolation on Lattice Critical probability

Lower bounding the critical probability
If there is an infinite cluster, then for any n, there exists a (self-avoiding)
path of length n:

ψ(p) ≤ P(∃ a path of length n starting at o) ∀n ∈ N .

If all edges were open, the number of κ(n) of paths of length n is smaller
than 4 · 3n−1.

Each path exists with probability pn, so by the union bound

P(∃ a path of length n starting at o) ≤ 4 · 3n−1pn .

If p < 1/3, this goes to 0 as n →∞. So pc ≥ 1/3.
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Bond Percolation on Lattice Critical probability

Upper bounding the critical probability I
Take the dual lattice whose vertices are at (Z + 1/2)2. Place an edge
if it does not intersect an open edge in the original lattice.
If a component is finite in the original lattice, it must be surrounded
by a circuit in the dual lattice.
If we can show that for some p, there is a positive probability of
having no such circuit, we obtain an upper bound on pc .

Bond percolation model and dual lattice.

M. Haenggi (Wireless Institute, ND) Lecture 3 Sep. 2010 15 / 38



Bond Percolation on Lattice Critical probability

Upper bounding the critical probability II

A circuit in the dual lattice of length
2n = 12 around the origin has to go
through one of the n − 1 = 5 dual
vertices indicated.

The number σ(n) of possible circuits of length 2n that surround the origin
is bounded as

σ(n) 6 (n − 1) · 32(n−1) ,

since for the first and last edge, the direction is given. So:

P(closed circuit) 6
∞∑

n=2

(1− p)2nσ(n) =
9(1− p)4

[1− 9(1− p)2]2
.

When p > 1− 1/(2
√

3) ≈ 0.71, this is less than one, which means that
there is a positive probability that the origin belongs to an infinite cluster.
So pc 6 1− 1/(2

√
3).
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Bond Percolation on Lattice Critical probability

Critical probability
Harry Kesten showed in 1980 that the critical probability for bond
percolation on the square lattice is pc = 1/2 — 25 years after this was
conjectured.
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Percolation on the Disk Graph Definition

Percolation on the Disk Graph
The critical radius
Take a PPP of intensity λ and add a node at the origin o. Let

ψ(r) = P(o ↔∞) = P(|C (o)| = ∞) .

and define rc , sup{r : ψ(r) = 0} .
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r = 1.3
This indicates that the critical radius is near 1.2 when λ = 1.
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Percolation on the Disk Graph Galton-Watson branching processes

Galton-Watson branching processes
Let Z0 = 1 and recursively define the stochastic process

Zn+1 =
Zn∑
i=1

Xn+1,i , where Xn,i are iid for all n, i ∈ N.

Zn can be viewed as the number of members in the n-th generation. Each
member of this generation gives birth to a random number of children,
Xn,i , which are the members of the (n + 1)-th generation.

The process {Zn} is a Galton-Watson branching process. If X ∈ N0, the
process can be represented by a random tree.

An important result is:
The probability of eventual extinction is 1 if E(X ) ≤ 1 (unless
P(X = 1) = 1), whereas for E(X ) > 1, the process may live forever.
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Percolation on the Disk Graph Bounding the critical radius

Lower bounding the critical radius
Populate the set C (o) of nodes connected to the origin step by step. Start
with C = {o}. Then at each step add all nodes that share an edge with an
element of C .
Each node has on average λπr2 edges, so the process can be compared
with a Galton-Watson branching process. If λπr2 < 1, the (independent)
branching process dies out w.p. 1, so our process does too.
So rc > 1/

√
λπ. For λ = 1, rc > 0.5642.

Upper bounding the critical radius
For the upper bound, we use the result for bond percolation.
Divide the plane into squares of size c = r/(2

√
2).

Each square corresponds to a potential edge in the bond percolation model.
The bond is open if there is at least one point of the PPP in the square,
which happens with probability p = 1− exp(−λc2).
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Percolation on the Disk Graph Bounding the critical radius

Upper bounding the critical radius
2c

c

r

If p = 1− exp(−λc2) > 1/2, or λ > log 2/c2, the bond model percolates.
If two edges are adjacent in the bond model, then two points of the PPP
are located in squares that touch in at least a corner. Since the distance
between them is at most 2

√
2c = r , the two points are connected in Gλ,r .

So we have λr2
c < 8 log 2, or

rc <
√

8 log 2/λ ; for λ = 1 : rc < 2.355 .
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Percolation on the Disk Graph Bounding the critical radius

The critical radius
We have shown (for λ = 1):

0.564 < rc < 2.355 .

The best known analytical bounds are 0.833 < rc < 1.83, so we’re not too
far off.
In [BBW05], the bounds

1.1979 < rc < 1.1988

were established with 99.99% confidence (using MC integration of a
complicated integral). This corresponds to a mean number of neighbors of
λπr2

c ≈ 4.51 per node.

So, a positive fraction of nodes can be connected at constant power level.

At this level of connectivity, the fraction of isolated nodes is

exp(−4.51) ≈ 0.011 .
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Secrecy Graphs Definition

Secrecy Graphs [Hae08]

The Poisson-Poisson secrecy graph
Let Φ be a PPP of users or "good guys" of intensity 1, and let Ψ be a
PPP of eavesdroppers of intensity λ. The secrecy graph ~Gλ,r = (Φ, ~E )
includes all directed edges for which −→xy if ‖x − y‖ < r and y is closer to x
than any eavesdropper.

−4 −2 0 2 4
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−3

−2

−1

0

1

2

3

4

This graph contains only edges
along which secure communi-
cation is possible.

good guys. o are receivers only.
eavesdroppers. λ = 0.3.
r = ∞ (no power constraint,
only secrecy contraints)
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Secrecy Graphs Power- and secrecy-limited regimes

Power- and secrecy-limited regimes
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power−lim. secrecy−limited
EN(r) =

1
λ

(1− exp(−λπr2)) .

Mean out-degree of ~G1/10,r .

The inflection point in EN(r) marks the boundary between the
power-limited and the secrecy-limited regime.

In the power-limited regime, the degree distribution is close to Poisson.

At the inflection point, r = rT = (2πλ)−1/2 =
√

5/π ≈ 1.26.
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Secrecy Graphs Percolation in the Poisson model

Percolation in the Poisson model

Critical radius and density
With ψ(λ, r) being the probability that the component containing the
origin (or any arbitrary fixed node) is infinite, the percolation threshold
radius for Ĝr is [BBW05]

rG , sup{r : ψ(0, r) = 0} ≈ 1.19 ,

For radii larger than rG, we define

λc(r) , inf{λ : ψ(λ, r) = 0} , r > rG.

This is the smallest density of eavesdroppers that ensures that the
network is partitioned into many small components.
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Secrecy Graphs Percolation in the Poisson model

Oriented Percolation

Fact (Out-percolation of ~Gλ,r)
λc(r) is monotonically increasing for r > rG, and we have

0 < lim
r→∞λc(r) <∞ .

In other words, there exists a λ∞ such that for λ > λ∞, ~Gλ,r does not
out-percolate for any r .

This follows from the fact that for fixed r the mean degree EN(λ) is
continuously decreasing to 0. For intensities smaller than λ∞, we define

rc(λ) , sup{r : ψ(λ, r) = 0} , λ 6 λ∞ .
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Secrecy Graphs Percolation in the Poisson model

Fact (Percolation radius)
The percolation radius rc(λ) is monotonically increasing with λ and has a
vertical asymptote at λ∞.

This follows from the monotonic decrease of the mean degree in λ.
For ENout < 1, for sure there is no percolation by the Galton-Watson
result.
Without a power constraint, the node out-degrees are geometric with
mean 1/λ:
Start at a good guy with a ball of radius 0. Let the ball grow until it
hits a node in Φ ∪Ψ. The probability that it is a good guy (in Φ) is
1/(1 + λ). If it is, let the ball grow further, until it hits the next point.
Again the probability that this is a good guy is 1/(1 + λ). So:

P(out deg = n) = (1− p)pn , p = 1/(1 + λ)

So λ∞ < 1. This is not a tight bound, as expected.
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Secrecy Graphs Percolation in the Poisson model

Numerical investigation
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Simulation
0.15−exp(2sqrt(2)−4r)

λc(r) ≈ λ∞ − exp(a − br) , r > rG

where: λ∞ ≈ 0.1499 a = 2
√

2 , b = 4
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Secrecy Graphs Percolation in the Poisson model

Two larger examples (r = ∞)
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λ = 0.2 (does not percolate)
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The SINR Graph

SINR-based Graph [DFM+06]

Definition
A link x1 → x2 exists if

g(‖x1 − x2‖)
W + β

∑
i>2 g(‖xi − x2‖) > θ .

β is the interference reduction factor (processing gain). Two nodes are
(bidirectionally) connected if there is a link 1 → 2 and a link 2 → 1.

Theorem [DFM+06]
There is a λc such that for all λ > λc there exists a βc(λ) such that for
β < βc(λ), there is a non-zero probability that a node belongs to an
infinite component.

M. Haenggi (Wireless Institute, ND) Lecture 3 Sep. 2010 33 / 38



The SINR Graph

Outline of proof
The main idea is to couple the model to a bond percolation model on the
lattice. In contrast to the disk graph, the edges here are dependent over a
long range. Nonetheless is can be shown that by choosing β appropriately
small, the squares in the lattice model can be crossed with a probability
large enough so that bond percolation occurs.

subcritical

supercritical

β

λ

Qualitative behavior of the percolation domain for SINR model.
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The SINR Graph

Comments
First model that includes interference.
Apparently β ≪ 1 is needed.
Open problem: Uniqueness of infinite component.
Everybody transmits. Half-duplex constraint is violated.
This is still a static graph (no fading).
Interference reduction by β is non-trivial. It comes at the expense of
bandwidth or time.
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Summary
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Summary

Lecture 3 Summary

Random geometric graphs and percolation
Full connectivity in Poisson networks requires increasing transmit
power with growing network size. The main obstacle to connectivity
are isolated nodes.
Percolation can be achieved at finite power. This means that there
exists an infinite component of connected nodes somewhere in the
network. In the Poisson case, this component is unique.
Critical radii or densities for percolation are unknown in most cases,
but good bounds can usually be given.
Percolation models have been extended to include
interference [DFM+06] and, more recently, to secrecy.
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Connectivity Gilbert’s disk graph

Definition (Gilbert’s disk graph [Gil61])

Take a stationary PPP of intensity λ
as the vertices of a random geometric
graph and connect two vertices by an
edge if they are within distance r of
each other. The resulting graph Gλ,r is
called a disk graph.

Example: λ = 1, r = 1
−5 0 5
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−4
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−1

0
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5

Interpretation
In the absence of interference and fading, the condition SNR > θ defines a
maximum communication radius

r =

(
P

θW

)1/α

.
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Connectivity Single connectivity

Connectivity
Let Φ be a PPP of intensity 1 on
[0,
√

n]2 so that EN = n.

What communication radius rc
guarantees that Gr (n) is connected whp
as n →∞?
Formally, we want

lim
n→∞P[Grc (n) connected] = 1 .

rc will be a function of n.

Examples: n = 100
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r = 1
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r = 3/2
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Connectivity Single connectivity

Minimum transmission radius for connectivity
A necessary condition for connectivity is that no node is isolated.
The expected number of isolated nodes

ENisol = n P(typical node is isolated) = n exp(−πr2)

needs to go to 0 as n grows. So we need πr2 ' log n for connectivity.

[Pen97] showed that indeed the isolated nodes determine the connectivity
such that

πr2 = log n + c(n) ,

for c(n) →∞, i.e., c(n) = ω(1), (arbitrarily slowly) is enough.

More precisely, setting πr2 = log n + c results in a Nisol ∼ Poi(exp(−c))
and thus

P(Gr(n)(n) connected) → exp(−e−c) , n →∞ .
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Connectivity Single connectivity

Different regimes of Gr(n)(n)

If r(n) = const. (constant mean degree): This is the thermodynamic limit.
If r(n)2 → 0, the graph is sparse.
If r(n)2 →∞, the graph is dense.
A special case of dense graphs are the ones in the connectivity regime,
where

r(n) =
c
π

√
log n .

In this regime, the probability of a node being isolated is

Pisol = exp(−πr(n)2) = n−c ,

and the number of isolated points is nPisol = n1−c .
So if c > 1, there will be no isolated nodes as n →∞, whereas for c < 1,
the number of isolated nodes goes to ∞.
If r(n)2/ log n →∞, Gr(n)(n) is in the superconnectivity regime.
If r(n)2/ log n → 0, Gr(n)(n) is in the subconnectivity regime.
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Connectivity Single connectivity

Bounds on isolation probability
What if r(n)2/ log n → 1?
Let

πr2 = log n + c(n) .

Then the mean number of isolated nodes is e−c(n), and the graph is
disconnected with positive probability if lim supn c(n) < ∞. More precisely,
the probability of being disconnected is bounded as

e−c(1− e−c) ≤ lim
n→∞P(disconnected) ≤ 4e−c ,

where c = lim supn→∞ c(n) [GK98].

The proof of the upper bound is based on a result from continuum
percolation, which says that the typical point lies either in an infinite
component or is isolated a.s. as n →∞.
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Connectivity k-connectivity

k-Connectivity

Condition for k-connectivity
k-connectivity means that any k − 1 nodes can be removed and the graph
is still connected. It implies the existence of k node-disjoint paths in the
network (by Menger’s theorem).

πr2 = log n + (k − 1) log log n − log((k − 1)!︸ ︷︷ ︸
Γ(k)

) + c(n)

results in k-connectivity a.a.s. if c(n) →∞ as n →∞, i.e., c(n) = ω(1).

Penrose has shown that the graph is k-connected as soon as the smallest
node degree is k [Pen99]. Equivalently, as soon as the number of nodes
with degree k − 1 goes to zero as n →∞.

Let’s calculate the mean number of nodes with degree k − 1.
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Connectivity k-connectivity

k-connectivity: minimum node degree
Let Nk−1 be the number of nodes with degree k − 1. For
πr2 = log n + (k − 1) log log n − log(Γ(k)),

E(Nk−1) = n exp(−πr2)
(πr2)k−1

Γ(k)

= n · (log n)1−kΓ(k)

n
· [log n + (k − 1) log log n − log Γ(k)]k−1

Γ(k)

= 1 + Θ

(
log log n

log n

)
= 1 + o(1) .

If we make πr2 a little larger, by c(n) = ω(1), the number of nodes with
degree k − 1 (or smaller) goes to zero.

So k-connectivity is achieved at small additional cost compared with simple
connectivity. For πr2 = (1 + ǫ) log n, k-connectivity is achieved
asymptotically for any k , for all ǫ > 0.
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Connectivity Nearest-neighbor graph

Nearest-Neighbor Graph
k-nearest neighbor connectivity
Again let Φ be a PPP of intensity 1 on [0,

√
n]2 so that EN = n.

Assume a (bidirectional) edge exists from each node to its k nearest
neighbors and denote the resulting graph by Gk .
Note that E(deg Gk) > k since most nodes will have a degree larger than k .
What is the minimum k that guarantees connectivity whp?

Theorem [BBSW05]

0.3043 log n < k < 0.5139 log n

Remark
Easy to establish that k = Θ(log n). Let k = ⌊c log n⌋. It was proven later
that there is a sharp transition at some constant ccrit, such that for
c < ccrit , the graph is disconnected a.a.s., and for c > ccrit, the graph is
connected a.a.s.
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Connectivity Nearest-neighbor graph

Proof idea for lower bound
Careful analysis of situations that prevent a
cluster of nodes from being connected. A likely
scenario for disconnectedness is:

The smallest disk contains a component of
size at least k + 1.
The annulus R1 is empty.
None of the nearest k neighbors of a node
in R3 is in the smallest disk.
A node at x must have k neighbors inside
A3.

If k = log n/8 and πr2 = k + 1, this scenario is
bound to occur as n grows. This establishes a
lower bound of log n/8 < k .

r2r2r

R1

3

x

R

A3
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Coverage
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Coverage Single coverage

Coverage

Coverage process

Let Φ = {x1, x2, . . .} ⊂ Rd be a point process, and {S1,S2, . . .} a
collection of non-empty, possibly random sets. Then

C = {xi + Si : i = 1, 2, . . .}

is a coverage process.
The union of all sets in the coverage process is a germ-grain model, where
xi are the germs and Si the grains.

Boolean models
If Φ is a stationary PPP and the Si ’s are iid (and independent of Φ), then
C is a Boolean model.
For coverage in sensor networks, often the Si are just disks of radius r , i.e.,
Si = S = {x ∈ R2 | ‖x‖ < r}.
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Coverage Single coverage

Concept of vacancy
The vacancy is the area of the part of the region of interest R that is not
covered, i.e.,

V =

∫
R

χ(x)dx ,

where χ(y) = 1{y /∈ Si + xi , ∀i} =
∏
i

1{y /∈ Si + xi} .

Condition for single coverage
Consider the basic Boolean model with a PPP of intensity 1 and fixed disks
of radius r . The probability that the origin is not covered is

Eχ(o) = exp(−πr2) .

This holds for any point in R2, so the expected vacancy of a square of area
n is

EV (n) = n exp(−πr2) .
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Coverage Single coverage

Condition for single coverage
For coverage, we need EV (n) → 0 as n →∞. This is guaranteed by

πr2 = log n + ω(1) .

This is the same condition as for connectivity!

However, EV (n) → 0 does not guarantee (complete) coverage, for which
we require P(V (n) = 0) → 1. (Convergence in mean does not imply
a.s. convergence.)
To find the condition where P(V (n) = 0) → 1, we need an observation by
Gilbert [Gil65]. Assuming disks are open sets, a necessary and sufficient
condition for coverage is:

The area is covered if all intersections of disk boundaries are covered, and
all intersections between disk boundaries and the border of the square of
area n.

Let’s look at the more general case of k-coverage.
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Coverage k-coverage

k-Coverage

Gilbert’s condition for k-coverage
Each intersection of boundaries must be covered k times.

Example (r = 1/3, k = 2)
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Here, disks of radius 1/3 were placed
uniformly at random until 2-coverage was
achieved.
33 disks were needed, giving rise to 545
intersections, most of them covered many
times, on average 8.6 times.
The 3 blue intersections are covered exactly
twice.
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Coverage k-coverage

Condition for k-coverage
The density of intersections is 4πr2, since a disk boundary ∂D
intersects each disk boundary within distance 2r .
The expected number of intersections in the square of area n is
4πr2n = (4 + o(1))n log n.
In a disk graph of radius r containing the Poisson points and the
intersections, each intersection point needs to have degree at least k .
The number of intersections with degree k − 1 (or smaller) needs to
go to zero, i.e.,

E(Ik−1) = 4n log n exp(−πr2)
(πr2)k−1

Γ(k)

should go to zero as n →∞.
Similar to the connectivity problem, with an additional factor log n. So
we need to add a term log log n in the expression for πr2.
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Coverage k-coverage

Condition for k-coverage

πr2 = log n + k log log n + ω(1)

is the necessary and sufficient condition for P(V (n) → 0) → 1, i.e.,
k-coverage [Hal85].

More precisely, for πr2 = log n + k log log n + x ,

P(V (n) = 0) → exp
(
− e−x

Γ(k)

)
, n →∞ .

As in the connectivity problem, k-coverage requires only a slightly larger
radius than single coverage.
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Coverage k-coverage

Example (n = 202)

E(V ) → 0 at πr2 = log n + c(n) or r ≈ 1.38.
P(V = 0) → 1 at πr2 = log n + log log n + c(n) or r ≈ 1.57.
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Coverage k-coverage

Remark on single coverage
Let c(n) = Θ(log log log n). In the intermediate regime

log n + c(n) < πr2 < log n + log log n + c(n) ,

we have E(V ) → 0 but P(V = 0) → 0.

Since V = V 1{V > 0}, we have from Cauchy-Schwarz

P(V > 0) ≥ (EV )2

E(V 2)
=⇒ P(V = 0) ≤ var V

E(V 2)
.

Vacancy for general Boolean model
Hall showed that the vacancy result generalizes to [Hal88]

E(V ) = n exp
(− λE(‖S‖))

for a PPP of intensity λ and iid Si .
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Coverage Cooperative coverage

Cooperative coverage

The cooperative coverage problem
In sensor networks, nodes may cooperate to jointly achieve coverage.
A node further away from a phenomenon will contribute less to the
joint coverage than a nearby node.
If ξ occurs at location y and is to be measured, the contribution from
a node x at distance r = ‖x − y‖ is ξr−α.
Assume sensor nodes form a PPP of intensity λ, and that the
phenomenon occurs at the origin o. The total cooperative
measurement is

G (λ) =
∑
x∈Φ

ξ‖x‖−α

We would like to find the minimum λ such that P(G (λ) > β) > 1− ǫ.
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Coverage Cooperative coverage

Duality

Δ Δ

o o

o

o o

o

Cooperative coverage Interference

Sensor nodes o combine

their signals.

At the phenomon location

Δ, measure the total

interference.

If the signal decay law is the same, then the cumulative measurement G at
the sensor nodes equals the interference power measured at the location of
the phenomenon if all nodes transmitted.
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Coverage Cooperative coverage

The cooperative coverage problem
The problem is exactly dual to the interference problem!
The cooperative coverage question is the same as asking:
What is the minimum λ such that the interference at o exceeds β with
probability at least 1− ǫ if all nodes transmit at power ξ?
We can apply all we know about interference in Poisson
networks [VHC06].
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Sentry Selection
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Sentry Selection

What is Sentry Selection?

Standing guard means that a few soldiers (or animals) monitor the
surroundings so that the rest can sleep (or eat). Those guards are thus
acting as sentries so that the rest can save energy and recover.
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Sentry Selection

Sentry selection is:

=⇒
Sentry selection in sensor networks
Putting nodes to sleep is the only efficient way to save energy.
In surveillance applications, how do we choose the subset of nodes acting
as sentries (standing guard) in a given period?
- The sentries should be able to monitor the entire area.
- After a certain period, a disjoint set of sensors shall assume sentry duty.
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Sentry Selection Problem formulation

Problem Formulation

Setting
Consider a Poisson point process Φ = {xi} ⊂ R2

of unit intensity, and let Sn be the square of area
n centered at the origin. So E|Φ ∩ Sn| = n.
Each point xi is the center of an open disk of
radius r , and we focus on the set of disks Cr (n)
that intersects Sn.
Note: This avoids boundary problems.

Question
What is the smallest r such that whp we may partition Cr (n) into k classes
such that each point y ∈ Sn is contained in a disk of each class:

r(n, k) = inf
r

{
lim

n→∞P[Cr (n) is k-partitionable] = 1
}

.
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Sentry Selection Problem formulation

Example (r = 1/5, k = 2)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

100 disks on the unit square.
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Both red and blue disks cover the
square. Only 46 disks are needed.
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Sentry Selection k-cover vs. k single covers

k-Cover vs. k Single Covers

Definition (k-cover)

Consider a set of disks Cr (n) = {C1, . . . ,Cn} of radius r , with Ci ⊂ R2.
Cr (n) forms a k-cover of S ⊂ R2 iff

min
x∈S

{
n∑

i=1

1Ci (x)

}
= k .

Necessity vs. sufficiency
Clearly, a k-cover is necessary. But in general, it is not sufficient.
For instance, let S be the set of all subsets of A = {1, 2, . . . , n} of size k .
The n sets Si = {B ∈ S : i ∈ B}, i ∈ A, form a k-cover of S which
cannot even be partitioned into two single covers if 2k > n.
So a solution to our problem must make use of its geometric setting.
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Sentry Selection k-cover vs. k single covers

Example (A k-cover does not imply k single covers)
Let n = 4, k = 2.
The set of subsets of {1, 2, 3, 4} of size k = 2 has

(4
2

)
= 6 elements:

S =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
Then let S1 =

{
{1, 2}, {1, 3}, {1, 4}

}
S2 =

{
{1, 2}, {2, 3}, {2, 4}

}
S3 =

{
{1, 3}, {2, 3}, {3, 4}

}
S4 =

{
{1, 4}, {2, 4}, {3, 4}

}
Each element of S is an element in exactly k = 2 sets Si , but there is no
way to partition Si into two single covers.
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Sentry Selection Main results

Main Results
Theorem (k-cover vs. k single covers [BBSW10])

Let E k
r be the event that the disks of radius r form a k-cover, and F k

r the
event that they are partitionable into k single covers. Then

P(E k
r \ F k

r ) ≤ ck

log n
.

Interpretation

This implies that asymptotically, we have k
single covers as soon as we have a k-cover.
The critical radius is the same. This does
not mean that all k-covers are partitionable,
but it means that such configurations appear
with probability tending to zero.

A non-partitionable 2-cover.
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Sentry Selection Main results

Theorem (Sufficient condition)
Let k ∈ N and r be given by

πr2 = log n + (2k + 1)(log log n)2 + ω(1) ,

where ω(n) →∞ as n →∞. Then whp Cr (n) can be partitioned into k
single covers of Sn.

Remarks
log n is needed “anyway” (for simple coverage or connectivity).
This is sufficient but not necessary.
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Sentry Selection Proof sketch

Proof Sketch
1. Gilbert’s observation
Let the disks be open disks. Then Cr (n) is (at least) a k-cover if every
intersection of disk boundaries is covered (at least) k times.
Expected number of intersections within Sn: 4πr2n = (4 + o(1))n log n.

Example (r = 1/3, k = 2)
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33 disks, 545 intersections, most of them
covered many times, on average 8.6 times.
The 3 blue intersections are covered exactly
twice.
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Sentry Selection Proof sketch

2. s-cover
With r given in the theorem, πr2 = log n + (2k + 1)(log log n)2 + ω(1),
Cr (n) forms an s-cover of Sn whp, where s = ⌊(2k + 1) log log n⌋.
Idea: Show that P(Po(πr2) 6 s − 1) = o(1/n log n) for this choice of s.

3. Bounding the number of nearby intersections
There are at most 677(log n)2 intersections within distance 2r of each
intersection. Any intersection within distance 2r of a fixed intersection x is
defined by two points within distance 3r . It can be shown that:

P(Po(9πr2) > 26 log n) = o(1/n log n) .

So there are at most 26 log n + 2 points within 3r , giving rise to no more
than 677(log n)2 intersections.
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Sentry Selection Proof sketch

4. Use the Probabilistic Method
Pick a fixed instance of the random cover. Assume it forms an s-cover.
Randomly color the disks with one of k colors.
If there is a positive probability that each intersection is covered by a disk
of each color, we’re done.
For a given intersections x , let Ax be the bad event that x is not covered
by a disk of each color.
If two intersections y and z are at least 2r apart, the two sets of disks
covering y and z are disjoint. Thus Ay is independent of the σ-algebra
generated by the events {Az : ‖y − z‖ > 2r}.
So Ay is independent of all but at most d = 677(log n)2 events. Since y is
covered by at least s disks,

P(Ay ) 6 k
(

1− 1
k

)s

(union bound) ,

where s = ⌊(2k + 1) log log n⌋.
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Sentry Selection Proof sketch

5. Apply the Lovász Local Lemma
Putting the pieces together, we can show

P(Ay ) <
1
ed

,

where d = 677(log n)2.
With the Lovász Local Lemma, this implies
that the probability of the intersection of all
positive events Āj is positive.
Note that [(d − 1)/d ]d−1 > 1/e for d > 2.

The fact that random coloring achieves the
goal with positive probability proves the
existence of a coloring scheme.

The (symmetric) Lovász
Local Lemma
Let A1, . . . ,Am be events
whose dependence graph
has maximal degree d > 2.
If

P(Ai ) 6 (d − 1)d−1

dd

then

P

 m⋂
j=1

Āj

 > 0 .
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Sentry Selection Algorithmic and distributed aspects

Existence of Efficient Distributed Algorithms
Due to its probabilistic nature, the proof is not constructive.
A standard hypergraph coloring algorithm (intersections are hyperedges)
does a good job. But not in a distributed fashion.

Theorem (Tradeoff between coverage radius and local decisions)

Fix k ∈ N. Let A , log n+ k(log n)2/3 and consider a Poisson point set of
density one in the

√
n ×√

n box. Place a disk of area A centered at each
point. Then whp the point (disk) set can be split into k covers. Moreover,
each point can decide which cover it is in by looking only at the other
points within (log n)1/6 of it.

Since the coverage radius is about
√

log n, each point only needs to know
about its very near neighbors. However, for nodes in a dense neighborhood,
it should need much less, maybe a node only needs to know (at most) its k
nearest neighbors.
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Sentry Selection Algorithmic and distributed aspects

Result
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Secrecy Coverage
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5 Summary
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Secrecy Coverage Setup

Setup
Take a PPP of intensity 1 of base stations, and another, independent
PPP of intensity λ of eavesdroppers.
Each base station covers a disk-shaped area whose radius is
determined by the nearest eavesdropper.
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λ=0.1

Focusing on the square of area n, what λ(n) guarantees coverage?
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Secrecy Coverage In one dimension

The One-Dimensional Case
Covered volume fraction
For λ > 0,

C 1(λ) = P(0 is covered)

is the covered volume fraction.

It is not difficult to show that

C 1(λ) =
1 + 4λ

(1 + 2λ)2
.

Vacancy
So, if V (n) is the total length of the vacant parts in an interval of length n,

EV (n) = n(1− C 1(λ)) =
4λ2n

1 + 4λ + 4λ2 .

For EV (n) → 0 as n →∞, we need λ2n → 0 or λ = o(1/
√

n).
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Secrecy Coverage In one dimension

Secrecy coverage result in one dimension [SH10]
If there are two consecutive red points, the interval in between is not
covered. If X is the number of consecutive red points, we have

EX ∼ λ2n

and P(V (n) = 0) ≤ P(X = 0). Bounding P(X = 0) and applying Janson’s
inequality yields that for λ2n → c , P(V (n) = 0) ≤ Pn → e−c .
So for λ2n →∞, P(V (n) = 0) → 0.

A more detailed analysis reveals that

P(V (n) = 0) ∼ e−4λ2n ,

so that for λ2n → 0, P(V (n) = 0) → 1.

So in this case, E(V ) → 0 and P(V = 0) → 1 happen simultaneously.
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Secrecy Coverage In two dimensions

In Two Dimensions

Asymptotic results [SH10]
The two-dimensional case requires significantly more work.

The currently best bounds are:
For λ3n(log n)3 → 0, P(V = 0) → 1.
For λ3n →∞, P(V = 0) → 0.

There is hope that the gap between the two λ(n) can be narrowed. At any
rate, λ ≈ n−1/3 is the right order.

This model can be viewed as a germ-grain model with correlated germ size.
The correlation increases the required mean disk size significantly compared
to the independent case, where λ = o(1/ log n) is sufficient.
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Summary

Section Outline
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2 Coverage

3 Sentry Selection

4 Secrecy Coverage

5 Summary
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Summary

Lecture 4 Summary

Connectivity and coverage
Full connectivity in Poisson networks requires increasing transmit
power with growing network size. The main obstacle to k-connectivity
are nodes with degree k − 1.
The coverage problem is quite different in nature. It only requires a
local analysis. However, it turns out that in the Poisson case, the
critical radii are closely related.
Sentry selection and secrecy coverage are examples of ongoing
research problems. They can be formulated cleanly as pure
mathematical problems, yet are practically motivated.

M. Haenggi (Wireless Institute, ND) Lecture 4 Sep. 2010 47 / 49



References

References I
P. Balister, B. Bollobás, A. Sarkar, and M. Walters.
Connectivity of Random k-nearest-neighbor Graphs.
Adv. in Appl. Probab., 37:1–24, 2005.

P. Balister, B. Bollobás, A. Sarkar, and M. Walters.
Sentry Selection in Wireless Networks.
Advances in Applied Probability, 42(1):1–25, 2010.

E.N. Gilbert.
Random plane networks.
Journal of the Society for Industrial Applied Mathematics, 9:533–543, 1961.

E. N. Gilbert.
The probability of covering a sphere with n circular caps.
Biometrika, 56:323–330, 1965.

P. Gupta and P. R. Kumar.
Stochastic Analysis, Control, Optimization and Applications, chapter “Critical Power for Asymptotic
Connectivity in Wireless Networks”, pages 547–566.
Birkhauser, Boston, 1998.
ISBN 0-8176-4078-9.

P. Hall.
On the coverage of k-dimensional space by k-dimensional spheres.
The Annals of Probability, 13(3):991–1002, August 1985.

Peter Hall.
Introduction to the Theory of Coverage Processes.
Wiley Series in Probability and Mathematical Statistics, 1988.

M. Haenggi (Wireless Institute, ND) Lecture 4 Sep. 2010 48 / 49



References

References II

M. Penrose.
The Longest Edge of the Random Minimal Spanning Tree.
Annals of Applied Probability, 7:340–361, 1997.

M. Penrose.
On k-Connectivity for a Geometric Random Graph.
Random Structures and Algorithms, 15(2):145–164, 1999.

A. Sarkar and M. Haenggi.
Secrecy Coverage.
Internet Mathematics, 2010.
Submitted. Available at http://www.nd.edu/~mhaenggi/pubs/im10.pdf .

Jagadish Venkataraman, Martin Haenggi, and Oliver Collins.
Shot Noise Models for the Dual Problems of Cooperative Coverage and Outage in Random Networks.
In 44th Annual Allerton Conference on Communication, Control, and Computing (Allerton’06), Monticello,
IL, September 2006.
Available at http://www.nd.edu/~mhaenggi/pubs/allerton06.pdf .

M. Haenggi (Wireless Institute, ND) Lecture 4 Sep. 2010 49 / 49



Analysis and Design of Wireless Networks
Lecture 5: Multi-hop Analysis of Poisson Networks

Martin Haenggi

INFORTE Educational Program
Oulu, Finland

Sep. 23-24, 2010

M. Haenggi (Wireless Institute, ND) Lecture 5 Sep. 2010 1 / 57



Outline

Overview

Contents of the Short Course
Lecture 1: Introduction and Key Result
Lecture 2: Throughput Analysis and Design Aspects
Lecture 3: Random Graphs and Percolation Theory
Lecture 4: Connectivity and Coverage
Lecture 5: Multi-hop Analysis of Poisson Networks
Lecture 6: Analysis of General Networks
Lecture 7: Emerging Architectures
Lecture 8: Modeling and Managing Uncertainty

M. Haenggi (Wireless Institute, ND) Lecture 5 Sep. 2010 2 / 57



Lecture 5 Overview

1 Routing in Poisson Networks

2 Correlation in Poisson Networks

3 Local Delay in Poisson Networks

4 Information Propagation in Poisson Networks

5 Summary

M. Haenggi (Wireless Institute, ND) Lecture 5 Sep. 2010 3 / 57



Routing in Poisson Networks
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Routing in Poisson Networks Network model

Multihop Network Model

PPP network model of M-hop routes
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x: PPP of intensity λ of

sources.
o: Destinations, at fixed

distance R in random
direction.

+: M − 1 = 2 relays per
route placed equidistantly
on the SD line.

Channel access: Only one node
per route transmits. This
means the set of transmitters
forms a PPP at all times.
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Routing in Poisson Networks Random access transport capacity

Random access transport capacity [AWKH10]
Retransmission scheme and delay bound

At each hop, the packet is transmitted until received successfully.
The number of transmissions at hop m is geometric and denoted by
Tm(M). The total number of transmissions is

T (M) =
M∑

m=1

Tm(M) .

The maximum number of transmissions is restricted to A. Hence if
T (M) ≤ A, the packet is successfully delivered. If T (M) > A, there is
an outage, and the actual number of transmissions is min{T (M),A}.
Thus the effective rate per route is

log(1 + θ)P(T (M) ≤ A)/min{T (M),A}.
M can be chosen from {1, 2, . . . ,A} = [A]. M = 1 means A single-hop
transmissions, while M = A means no retransmissions are possible.
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Routing in Poisson Networks Random access transport capacity

Definition (Random access transport capacity)

C (A) = max
M∈[A]

λR P(T (M) ≤ A)
log(1 + θ)

E min{T (M),A}
= λR log(1 + θ) max

M∈[A]

P(T (M) ≤ A)

E min{T (M),A}

Upper bound
Since

P(T (M) ≤ A)

E min{T (M),A} ≤
1

ET (M)

and ET (M) = M/ps(M),

C (A) < λR log(1 + θ) max
M∈[A]

ps(M)

M
.

Since ps(M) = exp(−c(R/M)2) there is an optimum M.
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Routing in Poisson Networks Random access transport capacity

Optimum number of hops

Mopt = arg max
M∈[A]

ps(M)

M

For α = 4 (and without noise),

Mopt = min{A,R
√

λθ1/4π} .

The resulting upper bound on the
random access transport capacity
is

C <

√
λ log(1 + θ)

π
√

eθ1/4 .

Noise can be included in the anal-
ysis [AWKH10]. Comparison of actual C (M)

and upper bound.
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Routing in Poisson Networks Delay analysis with queueing

Delay Analysis with Queueing [SH10]

The TDMA-ALOHA channel access scheme
The previous model did not include queueing delays, since there is no
queueing.
If nodes are not permitted to re-transmit in each slot until successful,
queueing delays become important.

Use the same network model, but relax the assumption of equal hop length
and change the channel access scheme to TDMA-ALOHA: In each route, a
token is passed from node to node, and the node with the token is allowed
to transmit with probability p.

But this node only transmits when it has a packet. So even if scheduled to
transmit, the node may not contribute to the interference.
So we do not make the "heavy-traffic assumption", where all nodes always
have packets. Only the source is backlogged.
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Routing in Poisson Networks Delay analysis with queueing

Success probabilities
Let ps(n) be the success probability at the n-th hop. Packet arrivals are
geometric with parameter pps(1) (source traffic intensity), provided that
ps(1) < ps(n), ∀n > 1. Then the queue of the (n − 1)-th relay is not
empty with probability ps(1)/ps (n).

It follows that the point process of interferers is a PPP with intensity

λI = λpI =
λp
M

M∑
n=1

ps(1)
ps(n)

,

where pI is the probability that a node is allowed to transmit and has a
packet.

So λI depends on ps(n), n ∈ [M]. But

ps(n) = P(SIRn > θ) = exp(−λI cr2
n ) ,

which introduces an intricate inter-dependence between λI and ps(n)!
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Routing in Poisson Networks Delay analysis with queueing

End-to-end delay
We obtain

λI =
λp
M

M∑
n=1

exp(−λI c(r2
1 − r2

n ) ,

which is a fixed point equation for λI given rn, n ∈ [M].
The end-to-end delay is

D = H1 +
M∑

n=2

Hn + Qn =
M

pps (1)
+ M

M∑
n=2

1− pps(n)

pps(n)− pps(1)
,

where Hn is the service time and Qn is the waiting time at node n.

To minimize the delay, necessarily r2 = r3 = . . . = rM = (R − r1)/(M − 1).
So the problem is to find Mopt and r1,opt, such that D(M, r1) is minimized.
Direct analytical optimization is not possible, but numerical evaluation is
straightforward.
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Routing in Poisson Networks Delay analysis with queueing

Numerical results (α = 4, λ = 10−4, p = 0.05)
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Each jump in the right plot corresponds to a crossover point in the left
curve. These are the points when M + 1 hops are better than M hops.

These results provide optimum relay locations and thus give guidelines for
routing. In practice, relays will have to be chosen from a point process, so
there is some deviation between the optimum and actual relay location.
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Routing in Poisson Networks Delay analysis with queueing

A critical assumption
In both models discussed, a critical assumption was made:

The transmission success events in subsequent time slots
and across hops are independent.

Strictly speaking, this is never completely true.
If there is significant mobility, this assumption is more likely to hold. But in
static networks, there is correlation between outage events.

Such correlations are the topic of the next section.
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Correlation in Poisson Networks

Section Outline

1 Routing in Poisson Networks

2 Correlation in Poisson Networks
Introduction
Spatiotemporal correlation
Outage correlation

3 Local Delay in Poisson Networks

4 Information Propagation in Poisson Networks

5 Summary
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Correlation in Poisson Networks Introduction

Correlation in Poisson Networks

Intuition (PPP with ALOHA probability p)
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Since the PPP is static (common randomness), there is temporal
correlation of the interference at o in different time slots.

There is also spatial correlation between the interference measured at
nearby points ◦ and �.
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Correlation in Poisson Networks Spatiotemporal correlation

Interference correlation: Setup
A PPP Φ ⊂ R2 with ALOHA with transmit prob. p and iid fading.
Let Ik(u) be the interference measured at u in time slot k .

The distribution of Ik(u) is the same for all k ∈ Z and u ∈ Rd , but the
common randomness Φ introduces dependence. The random MAC and
fading help de-correlate the interference, but not fully.

For example: Let’s assume p = 1 and no fading. Then Ik(u) and Iℓ(u)
would be perfectly correlated, for all k , ℓ ∈ Z.

Definition (The spatio-temporal correlation coefficient)

For path loss laws g(x) : R2 → R+ for which the interference has a finite
second moment and k 6= ℓ,

ζ(u, v) , E[Ik(u)Iℓ(v)] − E[Ik(u)]2

E[Ik(u)2]− E[Ik(u)]2
.
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Correlation in Poisson Networks Spatiotemporal correlation

Calculation of the moments

For all k ∈ Z and u ∈ R2, Ik(u)
d
= I0(o).

The first moment, EIk(o), follows directly from Campbell’s theorem:

EIk(o) = pλ

∫
R2

g(x)dx .

The second moment is

E(Ik(o)2) = E

∑
x∈Φk

hxog(x)

2
= pE(h2)λ

∫
R2

g2(x)dx + p2E(h2)λ2
∫

R2

∫
R2

g(x)g(y)dxdy ,

which follows from the second-order product density of the PPP (see
Lecture 6).
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Correlation in Poisson Networks Spatiotemporal correlation

Spatio-temporal correlation [GH09]
Spatio-temporal correlation coefficient of Ik(u) and Iℓ(v), k 6= ℓ:

ζ(u, v) =
p
∫

R2 g(x)g(x − ‖u − v‖)dx
E(h2)

∫
R2 g2(x)dx

.

Temporal correlation
Setting u = v yields the temporal correlation coefficient. For Nakagami-m
fading, it is simply

ζt = p
m

m + 1
.

The correlation is proportional to the transmit probability p.
Fading helps decorrelate the interference. In Rayleigh fading, the
correlation coefficient is p/2.
Different MAC schemes and channels with memory exhibit stronger
correlation, so this is a lower bound.
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Correlation in Poisson Networks Outage correlation

Impact of interference correlation on outage
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g(x) = ‖x‖−4, θ = 1. Follows from the joint success probability (pgfl)

P(Au,Av ) = exp

(
−λ

∫
R2

1−
(

p
1 + θg(x)/g(z)

+ 1− p
)2

dx

)
.

This has an impact on retransmission schemes and delays.
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Local Delay in Poisson Networks
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Local Delay in Poisson Networks Setup and problem formulation

Local Delay

Basic question
How long does it take for a node in a (Rayleigh fading) Poisson network
with ALOHA to successfully communicate with its nearest neighbor?

Scenarios
High-mobility network:
For each attempt, a new realization of the PPP is drawn.

Static network:
The realization stays the same over time.

Nearest-neighbor transmission:
Transmit to nearest node or to nearest receiver. (Or receive from nearest
node or nearest transmitter.)
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Local Delay in Poisson Networks Setup and problem formulation

Nearest-neighbor transmission (NNT) in a static network
3 time slots:
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x Transmitters. x Receivers. o Source node under consideration.
� Destination node under consideration.

The black disk is necessarily free of interferers! This means we need to
calculate the conditional interference.
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Local Delay in Poisson Networks Setup and problem formulation

Nearest-neighbor transmission (NNT)

Outage conditioned on nearest-neighbor distance

Nearest-neighbor distance:
fR(r) = 2λπr exp(−λπr2)

Having the nearest neighbor at distance R
implies that there is no interferer in the
ball Bo(R) centered at o with radius R .
So the nearest node sees the conditional
interference, conditioned on the disk
Bo(R) being empty.
By stationarity of Φ, the situation is
statistically the same if the transmitter is
located at (R , 0) and its nearest neighbor
at o.

R

Φ

2R
co

sΦ
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Local Delay in Poisson Networks Setup and problem formulation

Nearest-receiver transmission (NRT) in a static network
3 time slots:
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Local Delay in Poisson Networks High-mobility networks

High-Mobility Networks

A lemma
Let H ⊂ R2 and

I =
∑
x∈Φ

txhx‖x‖−α ,

where t ∈ {0, 1} are the Bernoulli transmit marks.
The conditional Laplace transform of I given that H does not contain any
nodes of Φ is LI (s | H)=

LI (s | H ∩ Φ = ∅) = exp

(
−λp

∫
R2\H

s
s + ‖x‖α

dx

)
.

This follows from the probability generating functional for (non-stationary)
PPPs.
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Local Delay in Poisson Networks High-mobility networks

Nearest-receiver Transmission in High-Mobility Networks

Outage conditioned on nearest-neighbor distance
If H = ∅, the success probability of a transmission ps(R) between two
nodes at distance R is

ps(R) = P(S > θI ) = P(h > θRαI )

=pqE(e−θRαI )=pqLI (θRα)

= pq exp(−γpλR2) ,

where
γ , θ2/αC (α) and C (α) , 2π2/(α sin(2π/α)) .
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Local Delay in Poisson Networks High-mobility networks

NRT in High-Mobility Networks

Outage and local delay
R is the distance from the origin to the nearest receiver in Φ, which is
Rayleigh distributed with mean 1/(2

√
qλ). Hence

ps = p
∫

exp(−γpr2)2qλπr exp(−qλπr2)dr

=
pπ

π + γpq−1

and
DNRT =

1
P(C) =

1
p

+
γ

πq
.

The optimum transmit probability is

popt(γ) =
π −√πγ

π − γ
.
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Local Delay in Poisson Networks High-mobility networks

NNT in High-Mobility Networks
Outage
Here we can apply the lemma with H = B(R,0)(R). The left half plane is
not affected by the empty disk, so we can write

LI (s | H) = exp(−λpC (α)s2/α/2) exp(−λpA(R , s)) ,

where

A(R , s) =

π/2∫
−π/2

∞∫
2R cos φ

rs
rα + s

dr

︸ ︷︷ ︸
A′(R,s,φ)

dφ

is the integral over the right half plane with
the hole, expressed in polar coordinates.

R

Φ

2R
co

sΦ

A(R , s) can be well approximated. Then decondition with respect to R .
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Local Delay in Poisson Networks High-mobility networks

NNT in High-Mobility Networks

Success probability for α = 4

P(C)
/ 2pq

πp
√

θ+2q
, θ > 16 ,

≈ 8pq
2πp

√
θ+pθ3/4(π−1)+8

, θ 6 16 .

Local delay for α = 4

DNNT

{
' π

√
θ

2q + 1
p , θ > 16

≈ 1
pq + π

√
θ

4q + (π−1)θ3/4

8q , θ 6 16

In the high-rate case (θ > 16), this is the same as for NRT!
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Local Delay in Poisson Networks Static networks

Static Networks

Key idea
Transmission success events are conditionally independent given Φ.

Conditioned on Φ, the number of transmissions until success is again
geometric with parameter

ps(R | Φ) = LI (θRα | Φ) = E(exp(−θRαI | Φ)) .

So:

D(R) = EΦ

(
1

LI (θRα | Φ)

)
.

The local delay is again obtained by de-conditioning on R : D = ER(D(R)).

Need to calculate the conditional Laplace transform.
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Local Delay in Poisson Networks Static networks

Static Networks

Lemma
Let I denote the interference as defined before, H ⊂ R2, and let

LI (s | Φ,H) = E(exp(−sI | Φ,Φ ∩H = ∅))

be the conditional Laplace transform given Φ and given that there is no
transmitter in H. Then

E
(

1
LI (s | Φ,H)

)
= exp

(
λ

∫
R2\H

ps
sq + ‖x‖α

dx

)
,

which for H = ∅ evaluates to

= exp

(
pλC (α)s2/α

q1−2/α

)
.
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Local Delay in Poisson Networks Static networks

Nearest-receiver transmission

Local delay

DNRT =
1
p

π

π − γpq2/α−2

if pq2/α−2 < π/γ. Hence there is a phase transition in the local delay. If p
is too large, the local delay is infinite.

Bounds
So we have Du > D > Dl for

Du =
1
p

π

π − γpq−2 , γp < q2π

Dl =
1
p

π

π − γpq−1 , γp < qπ

The optimum transmit probability can be bounded using these bounds.
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Local Delay in Poisson Networks Summary of results

Summary of Results

Mean delay for nearest-receiver transmission [Hae10c]

High-mobility networks: D =
1
p

+
γ

π(1− p)

Static networks: D =
1
p

π

π − γp(1− p)2/α−2 !

γ = θ2/α2π2/(α sin(2π/α)) is the spatial contention parameter.

"High mobility" means that a new realization of the PPP is drawn in each
time slot.
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Local Delay in Poisson Networks Summary of results

Comparison (α = 4)
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NRT: Nearest-receiver transmission. NNT: Nearest-neighbor transmission.
In the high-mobility case, the delay is insensitive to p.
Static networks suffer from a significantly increased delay (due to
correlation or lack of diversity). The min. delay is 4 times larger
asymptotically.
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Local Delay in Poisson Networks Remarks on the noisy case

Local Delay with Noise [Hae10b]

Networks without interference, just noise
This case is non-trivial also. Without interference, the network is a
collection of independent links. Over a link of distance R , the received
power is

Pr = PhR−α ,

where P is the transmit power and h is the (power) fading coefficient.
Given R , we have

ps|R = P(h > θRα/P) = 1− Fh(θRα/P) .

Fading is assumed iid over time, thus the mean delay of successful
transmission, conditioned on R , is p−1

s|R .
So we have:

iid R: D = 1/ER(ps|R) ; static R : D = ER(1/ps|R ) (ensemble avg.) .
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Local Delay in Poisson Networks Remarks on the noisy case

The Rayleigh/Rayleigh case
If R is Rayleigh distributed (as a nearest-neighbor link in a Poisson
networks), then for constant transmit power P ,

D = 2πλ

∫ ∞

0
exp(θrα/P)r exp(−λπr2)dr

diverges to infinity as soon as α > 2. Hence power control is necessary for
α > 2 for finite delay.
Let

P , aRα−2+b , for a, b ≥ 0 .

and consider D(a, b). We find

D(a, 0) =
λπ

λπ − θ/a
, θ < aλπ ; D(a, 2) = exp

(
θ

a

)
.
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Local Delay in Poisson Networks Remarks on the noisy case

Induced fading
Assume there is no channel fading, but the sender uses randomized power
control.
Is it possible to achieve finite local delay for all θ > 0 even with b = 0?

Answer: Yes—using a polynomial-tail distribution for power control.

We use the Pareto distribution with complementary distribution

P(H > x) =

(
k − 1
kx

)k

, k > 1, x ≥ 1− 1/k ,

parametrized with a single parameter k such that E(H) = 1 for all k > 1.
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Local Delay in Poisson Networks Remarks on the noisy case

Pareto random power control

The transmit power is chosen to be P = HRα−2+b, with H temporally
independently Pareto.
It follows that

ps(R) =


(

k−1
kθR2−b/a

)k
for R2−b > a(k−1)

θk

1 otherwise

The local delay with Rayleigh R is minimized for k = 2 (heaviest tail).
In this case,

D(a, 0) = 1 + (4ξ + 8ξ2) exp(−1/(2ξ)) ,

where ξ , θ/(λπa).

This is finite for all choices of θ and a, and D(a, 0) = Θ(θ2), θ →∞!
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Information Propagation in Poisson Networks

Section Outline

1 Routing in Poisson Networks

2 Correlation in Poisson Networks

3 Local Delay in Poisson Networks

4 Information Propagation in Poisson Networks
The SIR multigraph
Propagation delay
The delay graph

5 Summary
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Information Propagation in Poisson Networks The SIR multigraph

Information Propagation in Poisson Networks

The SIR multigraph
Let Φ be a PPP on R2, partitioned at each time k ∈ N into a transmitter
process Φt(k) and a receiver process Φr (k) by a ALOHA.
Let 1k(x → y) = 1 if x ∈ Φt(k) and y ∈ Φr (k) and the following
conditions hold:

Interference: The disk b(y , β‖x − y‖), β > 0 is free from other
transmitters.
Noise: ‖x − y‖ < η.

Otherwise 1k(x → y) = 0.

These two conditions approximate the condition SINR > θ. They are
known as the protocol model for communication [GK00].
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Information Propagation in Poisson Networks The SIR multigraph

Definition (The SINR multigraph)
The connectivity at time k is captured by the weighted and directed
random geometric graph G (k) = (Φ, ~Ek) with

~Ek = {(x , y) : 1k(x → y) = 1} .

A weight k is attached to all these directed edges.
The SINR multigraph G is the edge-union of these snapshot graphs:

G(0, n) =

(
Φ,

n⋃
k=0

~Ek

)

G(0, n) captures all information about the network from time 0 to time n.

Definition (Causal path)
A causal path is a directed path {x0,~e0, x1,~e1, . . . ,~eq−1, xq} with strictly
increasing edge weights.
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Information Propagation in Poisson Networks The SIR multigraph

Example (SIR multigraph)
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Information Propagation in Poisson Networks The SIR multigraph

Example (SIR multigraph after 10 and 20 time slots)
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bidirectionality.
Information propagates along causal paths in this graph. Causal here
means edge weights are strictly increasing.
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Information Propagation in Poisson Networks Propagation delay

Propagation Delay [GH10]

Single-hop delay
Add a node at the origin, and let

TO = min{k :
∑
x∈Φ

1k(o → x) > 0}

be the number of time slots to connect to any node.

If η < ∞, E(TO) = ∞, since the origin is too far from any node with
probability exp(−λπη2).
So focus on the interference-limited regime where η = ∞. In this case,
E(TO) is finite and can be lower bounded.
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Information Propagation in Poisson Networks Propagation delay

Path formation time
The path formation time from x to y is

T (x , y) = min{k : G(0, k) has a path from x to y} .

Similarly, define

Tn(x , y) = min
k>n

{k − n : G(n, k) has a path from x to y} .

Since T is sub-additive, for 0 < p < 1, i.e.,
T (o, y) ≤ T (o, x) + TT (o,x)(x , y), the propagation time constant

µ = lim
x→∞

ET (o, x)

x

is finite. It is infinite with noise, but if the disk graph Gλ,η percolates and
we only consider nodes in the infinite component, again µ is finite.
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Information Propagation in Poisson Networks Propagation delay

Numerical results
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Mean hop lengths of fast routes

Depending on the distance, a different p is optimum. The mean hop length
of fast routes increases with ‖x‖.
This framework allows reverse engineering to find good routing protocols.
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Information Propagation in Poisson Networks The delay graph

The Delay Graph [Hae10a]

Definition (Single-hop delay)
Given a point process Φ and a MAC scheme that, at any given moment k ,
partitions the network into transmitters and receivers, the single-hop delay
D : Φ2 → R is defined as

D(x , y) , E
[
min
k∈N

1k(x → y)

]
where the expectation is taken with respect to the MAC scheme and the
fading.

Definition (Delay graph Gτ )

The delay graph is the random geometric digraph Gτ = (Φ, ~Eτ ), where
(x , y) ∈ ~Eτ if D(x , y) ≤ τ .
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Information Propagation in Poisson Networks The delay graph

Properties of the delay graph
A source and a destination node are connected by a directed edge if
the source can be expected to reach the destination (in a single hop)
in at most τ time slots.
The delay graph is related to the SIR multigraph as follows: In the
delay graph, the edge −→xy is present if the expected smallest edge
weight in the SIR graph is at most τ .
ALOHA: For τ < 4, all nodes are isolated, while for τ →∞, the graph
is fully connected. So the connectivity exhibits a phase transition with
respect to τ , in the sense that there exists a finite critical value τc ,
such that Gτ a.s. has an infinite out-component for τ > τc (i.e., there
is a node from which an infinite number of nodes can be reached).
The delay graph, averaged over Φ, can used to determine the
delay-minimizing hop length.
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Information Propagation in Poisson Networks The delay graph

Delay-optimum number of hops for ALOHA
Let

h(n) , n(n + 1)
√

log(1 + 1/n)√
b(2n + 1)

, n > 0 ,

where

b =
pλπΓ(1 + 2/α)Γ(1 − 2/α)θ2/α

q1−2/α
.

This function yields the distance Rn = h(n) for which
nD̃(Rn/n) = (n + 1)D̃(Rn/(n + 1)). So at distance Rn, the delay for n
hops is the same as the delay for n + 1 hops, hence for smaller distances, n
hops is better than n + 1. It follows that

n hops is optimum ⇐⇒ h(n − 1) < R ≤ h(n) .

As n →∞, h(n) ∼ n/
√

2b, so to cover a distance R , the optimum number
of hops nopt ≈ ⌈R

√
2b⌉.
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Information Propagation in Poisson Networks The delay graph

Example (Delay graphs for constant p = 0.25)
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Delay graphs for τ = 50, 100, 200 for λ = 1, transmit probability p = 0.25,
path loss exponent α = 4, and SIR threshold θ = 10. Bidirectional edges
are bold.
Mean out-degrees: 1.81, 2.28, and 2.89.
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Information Propagation in Poisson Networks The delay graph

Example (Delay graphs for constant p = 0.05)
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Delay graphs for τ = 50, 100, 200 for λ = 1, transmit probability p = 0.05,
path loss exponent α = 4, and SIR threshold θ = 10. The radius of the
circles at each node is proportional to the node degree.
Mean out-degrees: 3.85, 7.45, and 12.5.
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Information Propagation in Poisson Networks The delay graph

Example (Variable p)
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Delay graphs for τ = 50 for λ = 1, path loss exponent α = 4, SIR
threshold θ = 10, with popt = e/τ ≈ 0.0544
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Summary

Section Outline

1 Routing in Poisson Networks

2 Correlation in Poisson Networks

3 Local Delay in Poisson Networks

4 Information Propagation in Poisson Networks

5 Summary
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Summary

Lecture 5 Summary

Multi-hop analysis
Multihop extensions and end-to-end analyses are possible in the
Poisson case. They are based on the single-hop success probabilities.
A common assumption is that transmission success events are spatially
and temporally independent.
A calculation of the correlation coefficient shows that this assumption
is reasonable for small transmit probabilities and with fading. For
larger p, there is enough dependence in static networks that the local
delay becomes infinite.
Another common assumption is that nodes are always backlogged. A
more careful analysis considers queues and the fact that nodes do not
transmit if they do not have packets.
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Summary

Multi-hop analysis
The SINR multigraph captures the dynamic connectivity of the
network. Using methods from first-passage percolation, the
propagation speed of a prioritized packet can be bounded. A simpler
version is the delay graph, which still captures the effects of
interference.
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Lecture 6 Overview

1 General Point Processes

2 Palm Theory

3 Analysis of Poisson Cluster Processes

4 Outage Probability in General Networks

5 Summary

M. Haenggi (Wireless Institute, ND) Lecture 6 Sep. 2010 3 / 47



General Point Processes

Section Outline

1 General Point Processes
Attraction and repulsion
Examples
Motion-invariant point processes
Formal definition

2 Palm Theory

3 Analysis of Poisson Cluster Processes

4 Outage Probability in General Networks

5 Summary
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General Point Processes

General Point Processes

Simon Denis Poisson, 1781-1840.

Is the analytical treatment of wireless networks restricted to his model?
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General Point Processes Attraction and repulsion

Motivation
The transmitter process is only a PPP if the process of all nodes is PPP
and ALOHA is used as the MAC protocol. In all other cases, the Poisson
model is at best an approximation.
Two typical cases:

Nodes form a PPP, but a CSMA-type MAC is used. This leads to
repulsion among the transmitters, i.e., a more regular process.
Nodes form a cluster process. This usually leads to attraction between
the transmitters as well, i.e., a more clustered process.

From regular to clustered processes

hardcore PPs PPP

randomness
complete spatial
zero interaction;

lattice

repulsion attraction

clustered PPs
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General Point Processes Examples

Examples

Example (Matern Hard-Core Process of Type I)

Take a homogeneous PPP of intensity
λp and remove all points that are
within distance r of each other.
The resulting process has intensity
λ = λp exp(−λpπr2).

Remarks:
- Imposes a minimum distance r .
- Process is stationary.
- Obtained by dependent thinning.
- Repulsion or inhibition.
- Possible model for CSMA.
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λp = 1, r = 1. Red points are
retained.
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General Point Processes Examples

Example (Neyman-Scott Cluster Processes)
Poisson cluster processes resulting from homogeneous independent
clustering applied to a PPP.

Parent points Φp = {x1, x2, . . .} form a PPP of intensity λp.
Clusters Nx are of the form Nxi = Ni + xi for each xi ∈ Φp.
The Ni are a family of iid finite point sets with distribution F (x)
independent of the parent process. The complete process is given by

Φ =
⋃

x∈Φp

Nx .

The intensity of the cluster process is λ = λp c̄ , where c̄ is the average
number of points per cluster.
If the number of points per cluster is Poisson, the process is called a
Poisson cluster process.
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General Point Processes Examples

Example (Special Neyman-Scott processes: Matern and Thomas
cluster processes)
Matern cluster process (parameters λp , c̄ , and a):
Daughter points are iid uniformly distributed in a ball of radius a around
the parent.
Thomas cluster process (parameters λp , c̄ , and σ):
Daughter points are iid symmetrically normally distributed with variance σ2

around the parent, i.e., each child cluster forms an inhomogeneous PPP
with intensity

λ(x) =
c̄

2πσ2 exp(−‖x‖2/2σ2) , (2-dim.)

so that the mean number of children per parent is c̄ .
Useful to model tactical networks (soldiers, troops, platoons, ...), human
cocktail parties, networks with closely cooperating nodes (virtual MIMO).
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General Point Processes Examples

Comparison of Thomas cluster process and PPP on [−5, 5]2:
Thomas process
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λp = 1, c̄ = 5, and σ = 0.2

PPP
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λ = 5.
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General Point Processes Examples

Comparison of Thomas cluster process and PPP on [−5, 5]2:
Almost a Thomas process

λ, c̄ , σ = ?

PPP
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λ = 5.
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General Point Processes Examples

Example (Poisson hole process)
Take a homogeneous PPP Ψ of intensity
λp and a second PPP Φ of intensity
1. Remove all points in Φ that are
within distance r of any point in Ψ.
The resulting Poisson hole process has
intensity λ = exp(−λpπr2).

Process is stationary.
Obtained by dependent thinning.
Possible model for cognitive
networks. Ψ are the primary and Φ
the secondary users. The secondary
users who are allowed to transmit
form the hole process.
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λp = 0.2, r = 1. Blue points o
form the hole process.
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General Point Processes Motion-invariant point processes

Motion-invariant Point Processes

Some definitions
Stationarity: {xi} and {xi + x} have the same distribution ∀x ∈ Rd .
Isotropy: The same holds for all rotations about the origin.
Motion-invariance: Stationarity plus isotropy. The stationary
(homogeneous) PPP is motion-invariant.

All point processes we consider are motion-invariant.

Palm theory
The analysis of all non-Poisson point processes requires proper conditioning
on the process having a node somewhere, typically at the origin. Such
events have probability 0, so some care is required. This is the topic of
Palm theory.
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General Point Processes Formal definition

Formal Definition

Definition (Point process)

N. A point process Φ on Rd is a random element taking values in a
measurable space (N,N ), where N is the family of all sequences φ of
points of Rd satisfying two regularity conditions:

1 The sequence φ is locally finite.
2 The sequence is simple, i.e., xi 6= xj if i 6= j ∀i , j ∈ φ.

σ-algebra N : Smallest σ-algebra on N such that φ(A) measurable for all
bounded Borel A.

So Φ: (Ω,A, P) 7→ (N,N ), and the distribution of Φ is

P(Y ) = P ◦ Φ−1(Y ) = P(Φ ∈ Y ) , Y ∈ N .

Intuition
Intuitively, a point process Φ is a random choice of one of the φ in N.
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General Point Processes Formal definition

Two points of view
The space of outcomes N can be interpreted as

The family of simple and countably finite point sets.
The family of random counting measures counting the number of
points in B ⊂ Rd .

Accordingly, we can write
Φ = {x1, x2, . . .} = {xi}.
Φ(B) = |{Φ ∩ B}|.

Intensity measure

Λ(A) = E(Φ(A)) =

∫
N

φ(A)P(dφ) for Borel A ,

where P is the distribution of the point process Φ.
If Φ is stationary, Λ(A) = λ|A|, i.e., λ is the ratio of the intensity measure
to the Lebesgue measure.
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General Point Processes Formal definition

Comparison with numerical random variables

Numerical random variable Point process

Probability space (Ω,A, P) (Ω,A, P)

Measurable space (R,B) (N ,N )

Random element X ∈ R Φ ∈ N

Events B ∈ B Y ∈ N
Distribution P(B) = P ◦ X−1(B) P(Y ) = P ◦ Φ−1(Y )

Measurability X−1(B) = Φ−1(Y ) =
{ω ∈ Ω: X (ω) ∈ B} ∈ A {ω ∈ Ω: Nω ∈ Y } ∈ A

Measure space (R,B, P) (N ,N , P)

Distr. function F (x) = P((−∞, x ])
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Palm Theory

Section Outline

1 General Point Processes

2 Palm Theory
Motivation
Palm distribution
Second-order statistics

3 Analysis of Poisson Cluster Processes

4 Outage Probability in General Networks

5 Summary
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Palm Theory Motivation

Palm Theory

Motivation
Take a motion-invariant point process Φt of transmitters. Assume we are
interested in interference. Where do we measure? We could take an
arbitrary point z ∈ R2:

I (z) =
∑
x∈Φt

hxg(‖x − z‖) .

Since Φt is stationary, the distribution of I (z) does not depend on z . And
E(I (z)) is the same for all point processes with the same intensity
(Campbell’s theorem).

However, we are not interested in an arbitrary location, but either
in a point of a process Φ ⊃ Φt , or
a point near a transmitter, which would be the desired transmitter and
thus does not contribute to the interference.
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Palm Theory Motivation

Motivation: Matern hard core process
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The mean interference mea-
sured at a point x is smaller
than at an arbitrary point since
there are no nodes nearby.

But measuring at x ∈ Φ means
conditioning that Φ has a point
at x .

Since Φ is stationary, we can al-
ways condition on o ∈ Φ.
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Palm Theory Motivation

Motivation: Cluster process
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z

Conditioned on o ∈ Φ, this means
that there is a cluster near the ori-
gin.

Measuring I (z) for small ‖z‖
means that the interference is likely
to be high, as there are more trans-
mitters close.

The node at the origin could be the
desired transmitter, so it does not
contribute to the interference.

Conditioning on a node at o but disregarding its impact yields the reduced
Palm distribution.
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Palm Theory Palm distribution

Palm Distribution
Definition
Let Y ∈ N be a point processes event, i.e., a certain PP property, such as
having no point in b(o, r). Φ ∈ Y means that Φ has this property.

The Palm distribution Po is defined as

Po(Φ ∈ Y ) , P(Φ ∈ Y ‖ o) ,

and the reduced Palm distribution P!
o is

P!
o(Φ ∈ Y ) , P(Φ \ {o} ∈ Y ‖ o) .

The corresponding expectations are Eo and E!
o .

Slivnyak’s theorem

For a PPP: P!
o ≡ P ⇒ E!

o ≡ E
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Palm Theory Second-order statistics

Second-order Statistics

Reduced second moment measure
The first-order statistic of a stationary point process is its intensity λ. The
second moment measure plays a role similar to the variance.
The reduced second moment measure λK2(B) is the mean number of
points in B \ {o} given that o ∈ Φ: λK2(B) = E!

oΦ(B) .
There is a corresponding density, the second-order product density ̺(2):

λK2(B) =
1
λ

∫
B

̺(2)(x)dx

̺(2) measures the probability that there are two points separated by x ; it is
the density pertaining to the second-order factorial moment measure:

α(2)(A× B) = E

 6=∑
x ,y∈Φ

1A(x)1B (y)

 =

∫
A

∫
B

̺(2)(x − y)dydx
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Palm Theory Second-order statistics

Second-order factorial moment measure
The name factorial moment measure comes from the fact that

α(2)(A× A) = E(Φ(A)2)− E(Φ(A)) = E(Φ(A)(Φ(A)− 1)) .

If Φ is motion-invariant, then ̺(2)(x) depends only on ‖x‖.
For the uniform PPP, ̺(2)(x) ≡ λ2, and

α(2)(A× B) = λ2|A| |B | .
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Analysis of Poisson Cluster Processes

Section Outline

1 General Point Processes

2 Palm Theory

3 Analysis of Poisson Cluster Processes
Interference in Poisson cluster processes
Outage in Poisson cluster processes

4 Outage Probability in General Networks

5 Summary
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Analysis of Poisson Cluster Processes Interference in Poisson cluster processes

Interference in Poisson Cluster Processes
Main idea.
Use Ripley’s K -function to estimate the interference.

Definition (Reduced second moment function ("Ripley’s K-function”))

λK (r) ,
∫

N
φ(b(o, r))P !

o (dφ)

K (r) , λ−1E[number of extra points within distance r
of a randomly chosen point]

For PPP, K (r) = πr2. For small r :
For regular processes, K (r) is smaller than πr2.
For clustered processes, K (r) is larger than πr2.

Asymptotically K (r) approaches πr2 for all motion-invariant point
processes.
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Analysis of Poisson Cluster Processes Interference in Poisson cluster processes

The L-Function

L(r) =

√
K (r)

π

To quantify regularity (devia-
tion from CSR), the derivative
L′(r) can be used.
L′(r) ≡ 1 for the stationary
PPP.
For small r :
- L′(r) < 1 ⇒ regular process.
- L′(r) > 1⇒ clustered process.
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Can be used to estimate interference. We expect that the interference
decreases with increasing regularity.
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Analysis of Poisson Cluster Processes Interference in Poisson cluster processes

The K function and interference
Let Φ be a motion-invariant point process on R2. Conditioned on o ∈ Φ
(desired transmitter), the interference at point z is given by

I !
o(z) =

∑
x∈Φ‖o\{o}

hxg(x − z) .

The distribution of I !
o will depend on ‖z‖ only, since Palm distributions of

motion-invariant PPs are not stationary but isotropic.
Let Kn(B) denote the reduced n-th factorial moment measure of Φ.
B = B1 × . . .× Bn−1, Bi ∈ R2.

Kn(B) =

∫
N

6=∑
x1,...,xn−1∈φ

1B(x1, . . . , xn−1)P !
o(dφ) .

We can determine E!
o I (z) and E!

o I 2(z) using K2 and K3. Let us focus on
the mean.
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Analysis of Poisson Cluster Processes Interference in Poisson cluster processes

Mean interference
We have

E!
o I (z) = E!

o

[ ∑
x∈Φ

hxg(x − z)

]
= E[h]λ

∫
R2

g(x − z)K2(dx)

= E[h]λ

∫
R2

g(x − z)L′(‖x‖)dx ,

where L′(r) = dL(r)/dr .
Since the process is stationary, K2(B) can be expressed as

K2(B) =
1
λ2

∫
B

̺(2)(x)dx ,

where ̺(x) is the second order product density.
We expect E!

o I (z) to increase with decreasing regularity for small ‖z‖.
M. Haenggi (Wireless Institute, ND) Lecture 6 Sep. 2010 27 / 47



Analysis of Poisson Cluster Processes Interference in Poisson cluster processes

Mean interference for Thomas cluster process [GH09]

It is known that [SKM95]:
̺(2)(x)

λ2 = 1 +
1

4πλpσ2 exp
(−‖x‖2

4σ2

)
where λ = λp c̄ . We obtain

E!
o I (z) = E(IPPP) +

c̄
4πσ2

∫
R2

g(x − z) exp
(−‖x‖2

4σ2

)
dx

= E(IPPP) + c̄Eg(X − z) ,

where X is a 2D Gaussian with variance
√

2σ in both directions—cf. Slide
9.
Note: g(x) must be bounded as ‖x‖ → 0 for this to be finite.

As expected, the interference is larger in the clustered case. The difference
gets smaller as ‖z‖ → ∞.
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Analysis of Poisson Cluster Processes Outage in Poisson cluster processes

Outage in Poisson Cluster Processes

Sketch of derivation
Assume the receiver is not part of the PP, but the desired transmitter
is.
Assuming Rayleigh fading, the success probability is given by the
conditional Laplace transform of the interference.
Express the conditional LT using the conditional generating functional.
Derive the conditional generating functional using the refined
Campbell theorem and Slivnyak’s theorem.
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Analysis of Poisson Cluster Processes Outage in Poisson cluster processes

Outage for clustered processes [GH09]

ps = exp
{
− λp

∫
R2

[
1− exp(−c̄β(R , y))

]
dy

}
×

∫
R2

exp(−c̄β(R , y))f (y)dy

where
β(R , y) =

∫
R2

g(x − y − R)
g(R)

θ + g(x − y − R)
f (x)dx .

where f (x) = λN(x)/c̄ is the pdf of the points in each cluster.

To emphasize isotropy, we (ab)use R = (R , 0) ∈ R2.

The first term does not depend on the cluster distribution, while the second
does not depend on the overall intensity.
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Analysis of Poisson Cluster Processes Outage in Poisson cluster processes

Comparison PPP vs. Matern cluster process (a = 0.6)
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Outage Probability in General Networks

Section Outline

1 General Point Processes

2 Palm Theory

3 Analysis of Poisson Cluster Processes

4 Outage Probability in General Networks
Problem formulation
Outage in the high-SIR regime
Extension to general fading statistics

5 Summary
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Outage Probability in General Networks Problem formulation

Outage Probability in General Networks

Setup (1)
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Start with a motion-invariant point process of density λ.
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Outage Probability in General Networks Problem formulation

Setup (2)
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The MAC scheme selects a subset of nodes as transmitters Φη,
for 0 ≤ η ≤ 1 s.t. the density of the transmitter point process is λt = ηλ.
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Outage Probability in General Networks Problem formulation

Setup (3)
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Let one transmitter be the receiver under consideration.
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Outage Probability in General Networks Problem formulation

Setup (4)
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Add a virtual transmitter at unit distance, with unit transmit power.
=⇒ What is the outage probability from T to R as η → 0?
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Outage Probability in General Networks Problem formulation

0

0.1

0.2

P(outage)

transmitter

density η

Questions
Is the outage probability
near η = 0 convex or
concave?
Can the network
accommodate some spatial
reuse without affecting the
outage probability?

Problem formulation
Take a general motion-invariant PP of intensity λ and a MAC scheme
that can tune the intensity of transmitters λt from 0 to λ.
Let η , λt/λ. What is ps(η) = P(SIR > θ) for Rayleigh fading as
η → 0 (high-SIR asymptotics)?
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Outage Probability in General Networks Outage in the high-SIR regime

Outage in the High-SIR Regime

Result [GGH10]
For all reasonable MAC schemes, ∃ unique parameters γ > 0 and
1 6 κ 6 α/2 s.t.

ps(η) ∼ 1− γηκ , η → 0 .

Moreover, ps(η) > 1− γηκ.
A MAC scheme is reasonable iff limη→0 ps(η) = 1.

γ(α, θ) is the spatial contention parameter that captures the spatial reuse
capability of a network. The smaller the better.
κ(α) is the interference scaling parameter and measures the coordination
level of the MAC. The larger the better.
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Outage Probability in General Networks Outage in the high-SIR regime

Result (from previous slide)

ps(η) ∼ 1− γηκ (η → 0)

Discussion
For all networks that use ALOHA, κ = 1. We know the result for the
PPP:

ps = exp(−ηγ) =⇒ κ = 1 .

For lattices with TDMA, κ = α/2.
CSMA with sensing range Θ(η−1/2) also achieves κ = α/2 (hard-core
process).
Conjecture: For Rayleigh fading, for all 0 ≤ η ≤ 1,

1− γηκ ≤ ps(η) ≤ 1
1 + γηκ

.
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Outage Probability in General Networks Outage in the high-SIR regime

Reasonable and unreasonable ALOHA for clustered point process
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Reasonable:
20% of nodes transmit.
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Unreasonable:
20% of clusters transmit.
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Outage Probability in General Networks Outage in the high-SIR regime

CSMA (α = 4)
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Simulation
1−1.95η2

Starting with a PPP of intensity λ = 0.3, the hard-core distance is adjusted
to get λt = 0.3η. γ ≈ 1.95 can be analytically determined, and
κ = α/2 = 2.
The asymptotic expression provides a good bound for η ∈ [0, 0.3].
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Outage Probability in General Networks Outage in the high-SIR regime

Reasonable TDMA on square lattice
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Minimum distance increases with η−1/2.
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Outage Probability in General Networks Outage in the high-SIR regime

Unreasonable TDMA on square lattice
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Minimum distance does not increase with decreasing η. limη→0 ps(η) < 1.
Actually, ps(η) decreases with decreasing η.
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Outage Probability in General Networks Extension to general fading statistics

Extension to General Fading Statistics
Asymptotic success probability with general fading [GAH10]

Let F̄ (x) be the complementary cdf of the fading random variables. We
assume that F̄ has a Taylor series expansion given by

F̄ (x) = 1− coxν +
∞∑

k=1

ck

k!
xk+ν , ν ∈ N, c0 > 0 .

We still have
ps(η) ∼ 1− γηκ , η → 0 ,

but now
1 ≤ κ ≤ αν/2 .

For Rayleigh fading, F̄ (x) = 1− x + Θ(x2), so ν = 1 as expected.
For Nakagami-m fading, ν = m.
For fading distributions with smaller likelihood of very small values, ν
is larger.
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Summary

Section Outline

1 General Point Processes

2 Palm Theory

3 Analysis of Poisson Cluster Processes

4 Outage Probability in General Networks

5 Summary
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Summary

Lecture 6 Summary

Analysis of general point processes
The analysis of non-Poisson point processes is difficult due to the
dependence among the node locations.
The analysis requires the use of Palm theory and higher-order
statistics such as the reduced second moments measures and
second-order product densities.
By considering the right asymptotic regimes, sharp statements are still
possible. In particular, the success probability is in great generality

ps(η) ∼ 1− γηκ , η → 0 ,

for a spatial contention parameter γ and an interference scaling
exponent κ.
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Cognitive Networks
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Cognitive Networks Regulations

Cognitive Networking

Ingredients

A wireless network operated by an
incumbent user
A secondary or cognitive user who
wishes to operate a network in the
same frequency band
Software-defined radios
Maxwell’s equations
Government regulations and spectrum
policies

x

x

o
x

o

x

primary

secondary

o

o

o
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Cognitive Networks Regulations

Regulations

US Government Agencies
NTIA: National Telecommunications and Information Administration
(www.ntia.doc.gov). Part of US Dept. of Commerce. Manages
federal use of spectrum.
OSM: Office of Spectrum Management
(www.ntia.doc.gov/osmhome/Osmhome.html).
FCC: Federal Communications Commission (www.fcc.gov). Manages
all other uses of spectrum.
Wireless Telecommunications Bureau (wireless.fcc.gov).
Spectrum Policy Task Force (http://www.fcc.gov/sptf/).
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Cognitive Networks Unlicensed access

Unlicensed Access
2008 FCC Report and Order and Memorandum (FCC 08-260)
Permits "unlicensed operation in the TV broadcast bands" and promises
"additional spectrum for unlicensed devices below 900 MHz and in the 3
GHz band". (Nov. 4, 2008).

Accessing a database of all fixed devices
All devices, except personal/portable devices operating in client mode,
must include a geolocation capability and provisions to access over the
Internet a database of protected radio services and the locations and
channels that may be used by the unlicensed devices at each location.

Sensing
Alternatively, unlicensed users may sense the presence of primary users and
transmit if they do not detect any primary transmission they could interfere
with.

M. Haenggi (Wireless Institute, ND) Lecture 7 Sep. 2010 7 / 63



Cognitive Networks Unlicensed access

Spectrum Sensing (FCC 08-260)
We will permit applications for certification of devices that do not include
the geolocation and database access capabilities, and instead rely on
spectrum sensing to avoid causing harmful interference, subject to a much
more rigorous set of tests by our Laboratory in a process that will be open
to the public. These tests will include both laboratory and field tests to
fully ensure that such devices meet a "Proof of Performance" standard that
they will not cause harmful interference.
Devices (operating in either mode) will be required to sense TV signals,
wireless microphone signals, and signals of other services that operate in
the TV bands, including those that operate on intermittent basis, at levels
as low as -114 dBm.

Sensing difficulty
Detecting digital TV signals is easy due to their embedded pilot tones.
Detecting wireless microphones, however, is difficult.
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Cognitive Networks Unlicensed access

Wireless microphone usage

"Going digital would destroy the soul of the music!"
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Cognitive Networks Unlicensed access

Sensing wireless microphones (FCC 08-260)
Wireless microphones will be protected in a variety of ways. The locations
where wireless microphones are used, such as entertainment venues and for
sporting events, can be registered in the database and will be protected as
for other services. In addition, channels from 2—20 will be restricted to
fixed devices, and we anticipate that many of these channels will remain
available for wireless microphones that operate on an itinerant basis. In
addition, in 13 major markets where certain channels between 14 and 20
are used for land mobile operations, we will leave 2 channels between 21
and 51 free of new unlicensed devices and therefore available for wireless
microphones. Finally, as noted above, we have required that devices also
include the ability to listen to the airwaves to sense wireless microphones as
an additional measure of protection for these devices.

Quote (graduate student trying to sense a wireless microphone signal)
"Detecting a wireless microphone is like finding a needle in a haystack. Its
signal is very narrow, and it can be anywhere in the spectrum."
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Cognitive Networks Unlicensed access

TV White Space DSA

(From “Considerations for Successful Cognitive Radio Systems in US TV White
Space", D. Borth et al., Motorola Inc, DySPAN 2008.)

M. Haenggi (Wireless Institute, ND) Lecture 7 Sep. 2010 11 / 63



Cognitive Networks Unlicensed access

The database catch 22
Short distance secondary link:

The database can only be accessed over a wired connection
If both secondary Tx and Rx need to access the database, they may
also communicate over the wired link
If only one does (can), how does it tell its partner node what
frequency to use?

Long-distance secondary link:
Tx and Rx may have different pictures of the primary user activity.
How do they negotiate?
If the Rx is in a rural area, it may not have database access, at least
not very dynamically.

In both cases, CUs may not be aware of other CUs. The cumulative
interference is not known.
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Cognitive Networks Interference

What is Interference?

Definition (Interference)
The effect of unwanted energy due to one or a combination of emissions,
radiations, or inductions upon reception in an RF communications system,
manifested by any performance degradation, misinterpretation, or loss of
information which could be extracted in the absence of such unwanted
energy.

Permissible vs. harmful interference
Permissible interference: Defined as any interference allowed by the FCC.
On the other hand, harmful interference is prohibited.
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Cognitive Networks Interference

Harmful interference
Topic of heated discussion.
Google July 26, 2010: 263,000 hits for "harmful interference" (in USA).
Google July 30, 2010: 285,000 hits

Two cases with a clear definition:
UWB: Maximum emission is limited (-48.5dBm/MHz). More than
that is harmful.
Direct Broadcast Satellite: An increase in unavailability of up to 10%
is tolerable (from 0.02% to 0.022%).

But in general?
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Cognitive Networks Interference

Definition (HI –
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2541.htm)
Any emission, radiation, or induction interference that endangers the
functioning or seriously degrades, obstructs, or repeatedly interrupts a
communications system, such as a radio navigation service,
telecommunications service, radio communications service, search and
rescue service, or weather service, operating in accordance with approved
standards, regulations, and procedures.

Note: To be considered harmful interference, the interference must cause
serious detrimental effects, such as circuit outages and message losses, as
opposed to interference that is merely a nuisance or annoyance that can be
overcome by appropriate measures.
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Cognitive Networks Interference

HI—European Union (Nov. 29, 2007)
Harmful Interference means interference which degrades or interrupts
radiocommunication to an extent beyond that which would reasonably be
expected when operating in accordance with the applicable EU or national
regulations.
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Cognitive Networks Interference

EU Spectrum Management

Check spectrumtalk.blogspot.com/2007/10/european-
commission-workshop-on.html.
UK: Ofcom at www.ofcom.org.uk/.
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Cognitive Networks Summary

Summary
Use of White Space

- spectrum sensing

- use of database

reduction of harm-

ful interference

smart secondary

users
robust primary users

- higher link margin

- improved receivers

exploiting white space

improved spectrum usage

better wireless services
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Cognitive Networks Summary

Summary

Use of White Space

- spectrum sensing

- use of database

reduction of harm-

ful interference

smart secondary

users
robust primary users

- higher link margin

- improved receivers

exploiting white space

improved spectrum usage

better wireless services

$?
"cognitive

networking"
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Cognitive Networks Interference in cognitive networks

Types of interference
In a cognitive network, there are four types of interference.
Example with two primary and secondary links each:

x

x

ox
o

x

primary/primary

primary/secondary

secondary/primary

secondary/secondary

o

o

o

We denote the four types as Ipp, Ips, Isp, Iss. The potentially harmful one
Isp.
Need to characterize these interferences, in the presence of unknown node
locations and fading. Stochastic geometry is the right tool!
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Cognitive Networks Application to TV white space

Application to TV White Space

Setup

CU Tx

PU Rx

Exclusion region

Assume CUs are uniformly randomly distributed in the red annulus with
density λ (PPP).
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Cognitive Networks Application to TV white space

Analysis
Goal: Satisfy the worst-case PU’s interference constraint.

Distance between PU and CU at po-
sition (r , φ):

d2(r , φ) = r2 + R2 − 2Rr cos φ

The CUs are distributed with radial
pdf

f (x) =
2x

S2 − (R + δ)2
, R+δ ≤ x ≤ S ,

and the mean number of CUs is

n = λπ(S2 − (R + δ)2) .

CU Tx

R

r

δ

Φ

S
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Cognitive Networks Application to TV white space

Analysis
The mean interference is thus, by Campbell’s theorem,

E(I ) = λP
∫ S

R+δ

∫ 2π

0

rdrdφ

(r2 + R2 − 2Rr cos φ)α/2 ,

which, for α = 4, is

E(I ) = Pλπ

[
(R + δ)2

δ2(2R + δ)2
− S2

(S2 − R2)2

]
.

The success probability is

ps = P(PTVR−α/I ≥ θ)

Using Markov’s inequality, we obtain

ps ≥ 1− E(I )θRα

PTV
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Cognitive Networks Application to TV white space

Example
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Cognitive Networks Application to TV white space

So far so good...

The white space box
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Cognitive Networks Application to TV white space

How about...

...thinking outside the white space box?

Is the wireless world just black and white?
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Cognitive Networks Application to TV white space

Is there white space inside the blue space?

RS

Thinking inside the blue disk...

...but why would we want to put CUs right at the TV station’s epicenter??
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Cognitive Networks Application to TV white space

Why does it work?
Check the SIR condition!

Inside the disk of radius S , the
PU’s received signal is strong.
Outside the disk of radius S ,
the interference from the CUs is
weak.

RS

=⇒ Either way, the SIR condition at the PU Rx is met!
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Cognitive Networks Application to TV white space

Example
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Cognitive Networks Application to TV white space

How about the secondary receiver?
How is it ensured that the SIR at the secondary receiver is large enough?

Use small link distances
Much better: Use interference
canceling techniques! The TV
signal is strong and has a
well-defined structure, so it can
be subtracted at the secondary
receiver, so that there is
vanishing interference.
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−20
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d=0.1

d=0.01

x

S
IR

 [d
B

]

SIR at CU without IC

Interference cancellation is only possible if the interfering signal is stronger.
So it is preferable to place CUs near the strong TV transmitter!
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Cognitive Networks Cognitive peer-to-peer networks

Cognitive Peer-to-Peer Networks [LH10]

Bipolar model: Setup

PU transmitters form a PPP of
intensity λp.
CU potential transmitters form a
PPP of intensity λs .
PU receivers are at distance rp.
CU receivers are at distance rs .
CUs cannot be active if within
distance D of a primary receiver.

The active CUs form a Poisson hole
process. −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Cognitive Networks Cognitive peer-to-peer networks

Poisson hole process
The Poisson hole process with fixed guard zone models a cognitive
bipolar peer-to-peer network.
It is a stationary and isotropic point process.
Interference compared to the Poisson/Poisson case without guard
zone:

- Ipp is unchanged.
- Ips is smaller, since there is a minimum

distance D − rp − rc between a
primary Tx and a secondary Rx.

- Isp is (much) smaller, due to the guard
zone D.

- Iss changes only due to the smaller
intensity of secondary transmitters.
λ′s = λs exp(−λpπD2).
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Cognitive Networks Cognitive peer-to-peer networks

Interference and outage

The total interference at the typical PU Rx is I = Ipp + Isp. Let δ , 2/α.

Ipp ,
∑
x∈Φp

Phx‖x‖−α

LIpp(s) = E exp(−sI ) = exp
(
−λp

π2δ

sin(πδ)
Pδsδ

)
.

Success probability within PUs:

P(S/Ipp > θ) = LIpp(θrα
p /P) = exp

(
−λpr2

p
π2δ

sin(πδ)
θδ

)
Total success probability: Since Ipp and Isp are negatively correlated:

P(SIR > θ) ≤ LIpp(θrα
p /P) · LIsp(θrα

p /P) (by FKG) .

But we don’t know Isp.
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Cognitive Networks Cognitive peer-to-peer networks

Interference and outage
The critical interference term is Isp. The point process of transmitting CUs
is the Poisson hole process. There are three possibilities to approximate of
bound Isp and the outage probability:

1 Approximate the Poisson hole process with a Poisson cluster process
by matching first- and second-order statistics. Use known results for
Poisson cluster processes to proceed.

2 Upper bound the interference by only excluding the CUs outside the
reference receiver.

3 Approximate the interference by a PPP of secondary transmitters of
intensity λs exp(−λpπD2) outside the guard zone.

We focus on Methods 2 and 3. In both cases, the approximate interference
Îsp is independent of Ipp, i.e., we’re restoring independence.
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Cognitive Networks Cognitive peer-to-peer networks

Interference and outage

Let Îsp be the interference at the typical PU Rx stemming from a PPP of
intensity λs outside the guard zone.

LÎsp(s) =

exp
{
− λsπ

(
sδEh(hδγ(1− δ, shρ−α))− D2Eh

(
1− exp(−shD−α)

))}
.

We know that
Îsp ≺ Isp

and thus
P(SIR > θ) > LIpp(θrα

p ) · LÎsp(θrα
p )

(assuming P = 1). Thus the additional outage caused by the presence of
the CUs is at most 1− LÎsp(θrα

p ).
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Cognitive Networks Cognitive peer-to-peer networks

Results
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Cognitive Networks Cognitive peer-to-peer networks

Nearest-neighbor model: Setup

PUs form a PPP of intensity λp .
CUs form a PPP of intensity λs .
PUs apply ALOHA with
prob. pp. Tx finds nearest node
as its receiver.
CUs cannot be active if within
distance Di of a primary
receiver.
Other CUs use ALOHA with
prob. pc and transmit to nearest
neighbor.

The guard zone Di is a random vari-
able with known distribution.
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Cognitive Networks Cognitive peer-to-peer networks

Interference and outage
From the probability generating functional for PPPs it follows that:
The intensity of secondary transmitters is exp(−pp).
This is independent of λp, since a larger λp implies smaller guard zones. In
fact, E(D2) = λ−1

p .

Similar approximations as in the bipolar case lead to good bounds.
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Cognitive Networks Cognitive peer-to-peer networks

Exclusion regions around transmitters
Exclusion regions around receivers can make sense if their locations are
known (database).
With a sensing-based approach, only transmitters can be detected.
With guard zones around the primary transmitters, the primary
receivers suffer from increased interference Isp, as the effective guard
zone radius reduces to D − rp. Ipp and Ipp and Iss remain the same,
and Ips decreases.
If a receiver acknowledges packet reception, its presence can also be
detected. A CU can match transmitter-receiver pairs and transmit
concurrently with a PU transmitter if the PU receiver is on the other
side.
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Cognitive Networks Cognitive peer-to-peer networks

The mutual nearest-neighbor model
In the previous nearest-neighbor model, the receiver may not be able
to acknowledge, since there may be another node nearby.
To prevent ACK collision, the mutual-nearest-neighbor transmission
protocol may be applied. Here, nodes form nearest-neighbor pairs if
they are mutual nearest neighbors. The fraction of nodes thus paired
is 62%.
The resulting point process of transmitters thus has maximum density
31%, and it is more regular than a PPP.
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Cognitive Networks Outlook

Outlook

Ongoing and future work
Software-defined radio
(Collaborative) detection and learning
Standardization (IEEE 802.22)
Economic aspects (spectrum leasing, pricing) and game theory
Legal aspects: how to detect and punish cheaters? The “hit and run"
radio problem.
Database issues
Ruling on TV white space
Network protocols, in particular for CUs (including Tx-Rx coordination)
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Cognitive Networks Conclusions

Concluding remarks
Cognitive radio enables the transition from "spectrostatics" to
"spectrodynamics".
Space is the critical resource; the network geometry greatly affects the
interference and thus the performance of cognitive networks.
Need to consider all potential CUs, not just one.
Stochastic geometry permits the analysis of interference and outages
in many scenarios where nodes are randomly distributed.
The problem of white spaces is not a black and white problem.
Wireless transmissions offer many gray areas, especially if advanced
receiver technologies are available.
"FCC rules are like Maxwell’s equations"

Cognitive networks pose multi-faceted challenges: Technical, economic,
legal, and policy issues.
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Cognitive Networks References
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Cellular Networks

Section Outline

1 Cognitive Networks

2 Cellular Networks
Coverage and outage
Relaying

3 Femtocells

4 Summary
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Cellular Networks Coverage and outage

Cellular Networks

Coverage
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Voronoi diagrams for base stations arranged as triangular lattice (hexagonal
cells) and as a Poisson process (Poisson Voronoi cells).
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Cellular Networks Coverage and outage

Definition (SINR cell)

For a point process Φ ⊂ R2, the SINR cell of point x ∈ Φ is

C (x ,Φ) = {y ∈ R2 : Pg(‖x − y‖) ≥ θ(IΦ(y) + W )} ,

where g is the path loss law and

IΦ(y) =
∑

z∈Φ\{x}
Pg(‖y − z‖)

is the interference.

Interpretation
The SINR cell of node x is comprised of all points, where the condition
SINR ≥ θ is met when x is the desired transmitter.

Fading can be included. The coherence length (or spatial correlation
properties) of the fading process needs to be specified.
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Cellular Networks Coverage and outage

Coverage by SINR cells
Each SINR cell is a random closed set. For the standard path loss model
and a PPP Φ, the volume of each cell is [BB09, Sec. 5.3]

|C (o,Φ)| = 1
λθ2/α

· α

2Γ(2/α)Γ(1 − 2/α)︸ ︷︷ ︸
f (α)

The Poisson Voronoi cell has volume
1/λ. If θ < 1 (spread-spectrum), cells
can overlap and be larger than 1/λ.
Consider two scenarios:

1 What would happen if there was
no interference?

2 Let θ = 1. What happens if
W = 0 and α →∞?
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Cellular Networks Coverage and outage

Coverage by SINR cells
1 In the interference-free scenario, the SNR cells are the grains of a

Boolean model with radius r = (P/(θW ))1/α.
2 In the noise-free case with α →∞ (and θ = 1), the SIR cells coincide

with the Voronoi cells. Indeed, limα→∞ f (α) = 1.

In both cases, convergence can be rigorously proven.

The union of SINR cells forms a coverage process with dependent grains.
Interesting questions are what fraction of the plane is covered, and how
often each point in the plane is covered. Integral expressions can be derived
for these problems [BB09, Sec. 7.5].

Why consider Poisson distributed base stations?
- Base station distributions may be irregular (different terrain,

micro-BSs, femtocells)
- Analysis is simplified in some cases. Results are pessimistic compared

to a regular arrangement.
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Cellular Networks Relaying

Relaying

A two-hop downlink scheme

BSs

unsuccessful MSs

successful MSs

MS chosen as relay

destination

BS transmission

(odd slots)

relay transmission

(even slots)
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Cellular Networks Relaying

Relaying

A two-hop downlink scheme
Let

Φb =

{
x ∈ Z2 :

x√
λb

}
be the base station point process. The density is λb.
The mobile users assisting the BS x ∈ Φb as relays
form a PPP Φx of intensity λx(y) = η(y − x) with
mean

N =

∫
R2

η(x)dx < ∞ .

The probability that a cell is not empty (of mobile users) is
µ = 1− exp(−N).

For example, we may choose η(y) = 1y ([−1/2, 1/2]2) and λb = 1, which
leads to a square coverage area per BS.
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Cellular Networks Relaying

A two-hop downlink scheme
Further assumptions:

Independent fading between all pairs of
transmitters and receivers and the standard
SINR condition.
BSs transmit in even, all at equal power, MSs
transmit in odd slots, synchronized across all
cells.
The destination in cell x is an additional node
r(x) at distance R = ‖x − r(x)‖.

Operation:
In the even slot, some relays will be able to decode the packet from
their BS.
A relay selection scheme selects a subset of these successful relays as
transmitters in the next slot. We consider the method where the relay
with the best channel to the destination transmits.
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Cellular Networks Relaying

Analysis I
Let

1(x → y | Φ)

be the indicator that y can receive from x when the
interferers are the nodes in Φ.
Consider the cell at o and let Pd be the probability
that the BS can connect to the destination in a single
hop:

Pd = E1(o → r(o) | Φb \ {o}) .

Let ux ∈ Φx be the relay selected in cell x and Pr the probability that the
selected relay can connect to the destination:

Pr = E1(uo → r(o) | Ψr \ {x}) ,

where Ψr is the set of all selected relays for the second hop.
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Cellular Networks Relaying

Analysis II
The success probability for the two-hop scheme is

Ps = 1− (1− Pd)(1− Pr ) .

We compare with a scheme where the base station transmits twice (time
diversity). The gain is the ratio of the outages

G (SNR, λb) =
(1− Pd)2

(1− Pd)(1− Pr )
=

1− Pd

1− Pr
.

The SNR is defined as SNR = PR−α/W , where P is the total transmit
power for both slots.

The diversity gain is

D(λb) = − lim
SNR→∞

log(1− Ps)

log(SNR)
.
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Cellular Networks Relaying

Analysis III
For the asymptotic evaluation, we tie the BS density λb and the SNR
together by

λb = SNR−β , β ≥ 0 .

For β = 0, the density is independent of β.
For β < 2/α, the system is interference-limited.
For β > 2/α, the system is noise-limited.
For the direct transmission,

Pd ∼


1− θSNR−1 αβ > 2 (noise)
1− θ(1 + cRα)SNR−1 αβ = 2 (noise/interference)
1− θcRαSNR−αβ/2 0 < αβ < 2 (interference) .
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Cellular Networks Relaying

Analysis IV
For the analysis of the two-hop performance, we assume the cell at o is not
empty.

The number of relays decoding the message from BS is k = |Φ̂o |. k is
Poisson.
There is an outage if the best relay’s (from the k) channel does not
satisfy the SINR condition.
Conditioned on k , the k relays are iid in the cell (but not uniform).

The resulting integrals need to be evaluated numerically.

The diversity order is

D(SNR−β) = min
{

1,
αβ

2

}
.

So there is no diversity gain in the two-hop system. This is due to the
Poisson number of nodes. No loss as soon as αβ > 2 (noise-limited
regime). But the outage gain G = (1− Pd)/(1 − Pr ) can be 10 or larger.
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Cellular Networks Relaying

Result

Outage probability vs. SNR for λb = SNR−β for α = 4,
η(y) = 51y ([−0.5, 0.5]2) and destination at z = (0.5, 0.5).
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Femtocells

Femtocells

Architecture [CAG08]
The capacity of a cellular system is increased by decreasing link
distances. However, adding base stations is expensive.
A cheaper alternative are femtocells, aka "home base stations", where
mini-BSs are installed by home users for improved coverage.
The device communicates with the cellular network by DSL or cable.
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Femtocells

Architecture

Femtocell architecture. Figure taken from PhD thesis "Coexistence in
Femtocell-aided Cellular Architectures" by V. Chandrasekhar (UT Austin).
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Femtocells

Challenges
Interference (near-far effect):

◮ Macrocell to femtocell. A user near a femtocell talking to the BS
transmits at high power.

◮ Femtocell to femtocell. Different femtocells may be located nearby.
◮ Femtocell to macrocell. The femto-BS may cause excessive

interference to a nearby user who is connected to a BS.

Synchronization. Over the IP backhaul, the necessary 1µs timing
accuracy is hard to achieve.
QoS. How to guarantee low latency in the order of 15ms?

Analytical approach
Due to the irregular deployment of the femtocells, the locations of the
femto-BSs needs to be modeled as random—as a point process. Different
interference management and power control schemes can be compared in
terms of their coverage and achievable rates.
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Summary
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Summary

Lecture 7 Summary

Emerging Architectures
All emerging wireless architectures add randomness and uncertainty to
the system. Their analysis greatly benefits from the tools provided by
stochastic geometry.
Cognitive networks and femtocell-aided cellular networks are
heterogeneous networks with different types of self- and
cross-interference that need to be characterized.
Relaying schemes give raise to non-Poisson point processes that
require Palm theory and higher-order moments.
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Noise vs. Interference
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Noise vs. Interference Introduction

Noise vs. Interference

What is "interference-limited"?
Often, we read "In this paper, we assume that the network is
interference-limited". What does this really mean?

Is it that there is no noise, i.e., W ≡ 0?
Is it that I (x)≫ W for all node locations x in the network? Since
I (x) varies tremendously over x and over time, we would have to say
EI (x)≫ W , ∀x ∈ Φ. But where is the signal here?
Is it that the link success probabilities are dominated by interference in
the sense that pN

s ≈ 1, or 1− pN
s ≪ 1− pI

s? How does this depend on
the link distance?
Is it E(SIR)≪ SNR?

Distances are random and vary greatly.
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Noise vs. Interference Introduction

Power control
If there is no noise, only interference, we can reduce all power levels to
arbitrarily small powers—without affecting the performance at all. But in
doing so, the noise has to become relevant at some point.

We will get back to this later.
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Noise vs. Interference Success probabilities

Success probability with noise and interference
For a PPP with Rayleigh fading and ALOHA with transmit probability p:

ps(r) = exp(−CNrα)︸ ︷︷ ︸
pN
s (r)

· exp(−CI r2)︸ ︷︷ ︸
pI
s(r)

,

where CN = θW /P and CI = γp = θ2/αC (α)p.

The noise and interference part are affected differently by the link distance!

Definition (Critical distance)

The critical distance ρ is given by pN
s (ρ) = pI

s(ρ):

ρ ,
(

CI

CN

) 1
α−2

= θ−1/α

(
C (α)pP

W

) 1
α−2

, α > 2 .
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Noise vs. Interference Success probabilities

Success probability at r = ρ

ps(ρ) is independent of θ. For r < ρ, we have pI
s < pN

s .

The success probabilities are given by

pN
s (ρ) = pI

s(ρ) = exp
(
−(C (α)p)

α
α−2 · (P/W )

2
α−2

)
.

ps(ρ) = pN
s (ρ)2 = pI

s(ρ)2

Also, we have
ρα ∝ θ−1 .

With increasing θ (rate of transmission), the critical distance decreases.
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Noise vs. Interference Success probabilities

Definition (Noise- and interference-limited links)
A link is noise-limited if r > ρ and interference-limited if r 6 ρ.

Remarks
This definition does not say anything about ps(r) or ps(ρ).
Long links tend to be noise-limited.

Example (α = 4)

CI

CN
=

π2Pp
2W
√

θ
; ρ =

√
π2

2
P
W

p√
θ

Some numbers: For P/W = 20dB, θ = 10, p = 2
√

θ/(10π2) ≈ 1/16, we
get CN = 1/10, CI = 1, and ρ =

√
10 ≈ 3.16.
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Noise vs. Interference Success probabilities

Example (Short distances; α = 4)
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ρ = 1
ps(ρ) = 0.82

Ok.

ρ =
√

10.
ps(ρ) abysmal.
Waste of power.

ρ = 1. 10× less power.
Better but ps(ρ) still

low.
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Noise vs. Interference Success probabilities

Discussion
If there are no noise-limited links in an ad hoc network, power is
wasted.
In other words: We need the link distance to reach the critical
distance ρ (while keeping ps(ρ) acceptably high).
Long-range communication is noise-limited. In a connected large
network (with limited power), there will always be noise-limited links.
Noise- or interference-limitedness is not a network property, but a link
property!

How to find the right balance between noise and interference?

Per-node power control changes the picture. However, channel inversion
increases the interference (and may not be feasible even). Also, constant
power is preferred from a PA standpoint.
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Noise vs. Interference Balanced design

Balanced design
Given:

Mean link distance R̄
Target success probability ps(R̄) = (1− ǫ)2

W , θ.
From CI R̄2 = − log(1− ǫ) and CN R̄α = − log(1− ǫ) we have

CN =
− log(1− ǫ)

R̄α
≈ ǫ

R̄α
; CI =

− log(1− ǫ)

R̄2
≈ ǫ

R̄2

and

P =
R̄αθW

ǫ
; p =

ǫ

R̄2θ2/αC (α)
.

For this P , p, the design is balanced in the sense that some links will be
interference- and some will be noise-limited since CI/CN = R̄α−2 and
ρ = R̄.
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Noise vs. Interference Balanced design

Example (α = 4)

Let R̄ = 3, W = 1, θ = 10, and (1− ǫ)2 = 0.9.
Then ǫ = 1−√0.9 and

CI =
ǫ

R̄2
≈ 0.0059

CN =
ǫ

R̄4
≈ 0.00065

P ≈ 15800
p ≈ 0.00037 .

The mean SNR (at dist. R̄) is about
23dB.
The mean SIR is 39dB. Mean dist. be-
tween transmitters is 26.
pI
s = pN

s = 0.95.
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Noise vs. Interference Balanced design

Dependence on θ

For all α > 2, ps(ρ) is independent of θ, and ρ ∝ θ−1/α.
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α = 4, d = 2. P/W = 43dB, p = 1/5000.

Maximization of "transport capacity": Maximize θ−1/α log(1 + θ):

θopt(α) =
−α

W(−αe−α)
,

where W is the Lambert W function. This is rate control.
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Noise vs. Interference Rate control

Optimum rate for transport capacity
For α ∈ (2, 5], the optimum rate of transmission

RTopt(α) ≈ 5
2

+ (α− 2) log 5 .

This is essentially linear (affine) in α.

Is this the best overall?
What is the most meaningful overall metric, and how to we maximize it?
We need to include the density of transmission also.

When doing so, how interference-limited is the network?
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Noise vs. Interference Transport density

Definition (Transport density)
Assuming the transmitter density is λ and links have distance R , the
transport density is

T , ps(R , θ,P , λ) log(1 + θ)Rλ .

Optimizing the transport density
For the PPP with Rayleigh fading, W ≡ 1 and α = 4,

T (R , θ,P , λ) = pN
s (R , θ,P)pI

s(R , θ, λ) log(1 + θ)λ

= exp(−θR4/P) exp(−c
√

θR2λ) log(1 + θ)λ , c = π2/2 .

We could try to maximize this quantity by optimizing in the
four-dimensional space (R , θ,P , λ). For α = 4, we find the relationship

λopt =
2

π2
√

θR2
.
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Noise vs. Interference Transport density

Optimizing the transport density (first attempt)

Now let R → 0 while increasing λopt ∝ R−2. We have

pN
s → 1, pI

s → e−1, λ→∞ ,

so the transport density grows without bounds at fixed θ, P (for the
singular path loss law).

Does that mean the transport density is a useless metric?
Not quite—if we consider that we cannot expect to let λ →∞. The
density of nodes is typically given and cannot be made arbitrarily large.
Also, the path loss law breaks down at very small distances.

So: We fix λ = 1 and play with the ALOHA parameter p. This means that
R = 1 is a lower bound on the distance, since the nearest-neighbor distance
is 1/(2

√
λ) = 1/2.
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Noise vs. Interference Transport density

Optimizing the transport density (second attempt)
With R = 1, λ = 1 and ALOHA,

popt =
2

π2
√

θ
,

and
T =

2
π2e
√

θ
exp(−θ/P) log(1 + θ) .

Letting P →∞,

T∞ =
2

π2e
log(1 + θ)√

θ
,

and
θopt = exp(2 +W(−2/e2))− 1 ≈ 3.912 ≈ 5.93 dB .

With infinite power and θopt,

T → 0.06000 nats/(s Hz m2) .
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Noise vs. Interference Transport density

Results
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Left plot: The blue region in the top left corner is the power-limited regime. The
bottom region is the rate-limited regime, and the top right part is "overrated". At
P = 10θ, 90% of the transport density is achieved (exp(−1/10) ≈ 0.9).

Right plot: Zoomed in on the range of optimum θ. θ = 5.93 dB is asymptotically
optimum. θ = 6 dB and P = 26dB are sensible choices that achieve 0.0594,
which is 99% of the asymptotic optimum.
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Noise vs. Interference Transport density

Optimizing the transport density vs. balancing
This design procedure is balanced if θ = P . Then ps = e−2 = 0.135, which
is abysmal.
For P = 100θ, pN

s = 0.99, and ps ≈ pI
s = e−1 = 0.368. This is

interference-limited.

As with ALOHA, maximizing a throughput metric may lead to poor
reliability and, consequently, delay performance. Better reliability is
achieved with less aggressive spatial reuse; balanced design permits a good
trade-off between power and density of transmissions.

Our previous (balanced) example adapted to R = 1 yields T = 0.007,
about 12% of the optimum. There is a high cost incurred by high reliability.
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Noise vs. Interference Transport density

Transport density with balanced design for θ = 2, 10
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Parameters: W = 1, R = 1, α = 4.

θ = 2 achieves higher (near-optimum) performance. Again, maximizing T
results in ps ≈ e−1.
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Noise vs. Interference Transport density

A definition of interference-limitedness
Let a be a power scaling factor, by which all transmit power levels are
scaled. Let M(a) be the (scalar) metric of interest, say throughput density
or delay. Then the network is ǫ-interference-limited if

lim
a→∞

∣∣∣∣M(1)−M(a)
M(a)

∣∣∣∣ 6 ǫ .

I.e., if the performance is already within a fraction ǫ of the performance
achievable with infinite power.

From M(1) to M(a), only the transmit powers change, nothing else.
So this definition is not applicable together with balancing, since with
balancing, the metric may decrease with increasing power.
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Mobility

Section Outline
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Mobility

Mobility

Point processes and mobility
Mobility adds a temporal dimension to the node locations.
We have considered only two cases so far:

◮ "infinite mobility": A new realization of the point process is drawn at
each time slot.

◮ No mobility: There is only one realization, which stays the same for all
time.

Realistic mobility models fall in between.
If nodes move independently, the statistics of the uniform Poisson
point process do not change, but mobility introduces temporal
correlations.
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Mobility

Mobility and fading
If nodes have a home location and make excursions within a certain region
around the location, a suitable model is

xi (t) = xH
i + wi (t) , ∀xi ∈ Φ ,

where w(t) is iid across nodes and time on some region B ⊂ R2.

The channel variations due to such a mobility model can also be
interpreted as fading!
Hence many of the tools we have to deal with fading channels are
applicable. Conversely, we may view fading as a geometric
phenomenon [Hae08].

The reason why this is possible is that the mobility model is stationarity.
For each i , E(xi (t)) is not a function of time. In many cases,
E(xi (t)) ≡ xH

i .

Other mobility models where xi (t) = xi (t − 1) + wi (t) (Brownian motion,
random walk) are more difficult to analyze.
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Mobility

Mobility and interference
The analogy between mobility and fading may be extended to include
interference.
In the infinite mobility case, consider the interference I from the nearest
node only, say at distance R . The SIR γ = 1/I = Rα. Averaged over R , we
have for the pdf of the SIR

fγ(x) = δλπxδ−1 exp(−λπxδ) , δ = 2/α ,

which is a Weibull distribution. For δ = 1, γ is exponentially
distributed—quite exactly like the SNR in a Rayleigh fading environment!

This is further explored in [GH10].

It is also important to analyze the correlations in the interference structure.
If nodes move according to some mobility model, how are the interference
Ix(t) and Ix(t + 1) correlated? Correlated interference makes outages
correlated, which affects ARQ schemes and routing.
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Mobility

Mobility and connectivity
Consider a random walk, where nodes choose a random direction every m
time slots and take steps of size s in that direction in each slot.
Putting n such nodes on the unit torus [0, 1]2 and connecting each pair of
nodes within distance r , we obtain a dynamic random geometric graph.
Some of its properties were studied in [DMPG09]. In particular, they
derived the expected lengths of the periods of connectivity and
disconnectivity.

Let µ = n exp(−πr2n) denote mean number of isolated nodes. If
µ = Θ(1), for each time, P(conn.) ∼ exp(−µ) as n →∞.

If r = Θ(
√

log n/n) and s = Θ(1/
√

n log n), then

TC ∼ (1− exp(−µ(1− e−4srn/π))−1 , TD ∼ (exp(µ)− 1)TC .
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Overall Summary and Conclusions
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Overall Summary and Conclusions Summary and concluding remarks
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Overall Summary and Conclusions Summary and concluding remarks
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and design insight
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Overall Summary and Conclusions Summary and concluding remarks

Stochastic geometry
Stochastic geometry is a tool to model and manage uncertainty.
There is tremendous uncertainty in modern wireless systems. The one
due to locations is critical.
Fading can be incorporated into the geometry.
The MAC thins the point process of all nodes to a point process of
transmitters. The result is a geometry that includes all sources of
uncertainty.
Dependences and correlations need to be modeled. They depend
strongly on the relative time scales.
Stochastic geometry and random graph theory result in random
geometric graph theory.
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Overall Summary and Conclusions Summary and concluding remarks

The uncertainty cube

channel

channel
access

Rayleigh fading
ALOHA
Poisson process

node
positions

Rayleigh
fading
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process
Poisson

We may project all three axes onto one to obtain a
geometry of path loss with fading.
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Overall Summary and Conclusions Summary and concluding remarks

Concluding remarks
Space is the critical resource; the network geometry greatly affects the
performance of wireless networks.
The uniform PPP is great to work with, but it is time to consider
other, often more realistic node distributions.
Stochastic geometry, in particular Palm theory, offers the tools to
analyze more general networks.
Interference correlation affects efficiency of ARQ and routing but is a
greatly under-investigated topic.
The theory is applicable to wireless networks with infrastructure, such
as multihop extensions of cellular systems.
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Overall Summary and Conclusions Outlook

Roadmap
The road to the analysis of general networks

PPP

single-hop;

graphs

general PP

multi-hop

PPP

multi-hop/e2e

general PP

single-hop

Lectures I-IV

Lectures VI,VII

Lectures IV,V

(no results yet...)

From green to red: Increasing dependence in time and space.
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Overall Summary and Conclusions Outlook

Outlook

Ongoing work
Analysis of end-to-end throughput and delay (including queueing
delays)
From analysis to synthesis: Routing, MAC, power control?
MIMO networks: How to use antennas?
Cooperative communications in large networks: Interference
cancellation, information-theoretic relaying, broadcasting and
multiple-access
Cognitive radio networks
Femtocells
Inclusion of secrecy constraints (secrecy graph, secrecy coverage)
Mobility: Temporal coherence of the point process
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Symbols

List of Symbols

[n] The set {1, 2, . . . , n}
b(x , r) ball of radius r centered at x
Φ Point process (and counting measure)
λ Intensity of (stationary) point process
d number of network dimensions
o Origin in R2 or Rd

LX (s) Laplace transform E(exp(−sX )) of random variable X
α Path loss exponent
δ , d/α
g(r) or g(x) Path loss law; typically g(r) = r−α

P Transmit power
S Received power
I Interference power
W Noise power
h Fading coefficient
R Transmission distance
p Transmit probability in slotted ALOHA
θ SINR threshold for successful reception
ps Success probability of a transmission
RT Transmission rate (spectral efficiency)
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